点评: 本题主要考查全等三角形的判定,先证明四边形ABCD是平行四边形是解题的关键.做题时从已知开始结合全等的判定方法由易到难逐个找寻.
6.下面获取数据的方法不正确的是( )
A. 我们班同学的身高用测量方法
B. 快捷了解历史资料情况用观察方法
C. 抛硬币看正反面的次数用实验方法
D. 全班同学最喜爱的体育活动用访问方法
考点: 调查收集数据的过程与方法.
分析: 根据实际问题逐项判断即可得到答案.
解答: 解:A、我们班同学的身高用测量方法是长度工具,可信度比较高;
B、快捷了解历史资料情况用观察方法的可信度很低;
C、抛硬币看正反面的次数用实验方法是事实事件,所以可信度很高;
D、全班同学最喜爱的体育活动用访问方法是事实事件,可信度很高.
故选:B.
点评: 本题考查了调查收集数据的过程与方法,通过本题也使学生了解了获得信息的方式方法.
7.用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是( )
A. SAS B. ASA C. AAS D. SSS
考点: 全等三角形的判定.
分析: 根据角平分线的作法判断,他所用到的方法是三边公理.
解答: 解:如图根据角平分线的作法,
(1)以O为圆心,以任意长为半径画弧交角的两边于A、B,所以OA=OB,
(2)分别以A、B为圆心,以大于 AB长为半径画弧,两弧相交于点C,所以AC=BC,
(3)作射线OC所以OC是△AOC与△BOC的公共边.
故它所用到的识别方法是边边边公理,即SSS.
故选D.
点评: 本题考查了全等三角形的判定;熟练掌握角平分线的作法是解本题的关键.
8.四个学生一起做乘法(x+3)(x+a),其中a>0,最后得出下列四个结果,其中正确的结果是( )
A. x2﹣2x﹣15 B. x2+8x+15 C. x2+2x﹣15 D. x2﹣8x+15
考点: 多项式乘多项式.
分析: 利用多项式与多项式相乘的法则求解即可.
解答: 解:(x+3)(x+a)=x2+(3+a)x+3a,
∵a>0,
∴(x+3)(x+a)=x2+(3+a)x+3a=x2+8x+15,
故选:B.
点评: 本题主要考查了多项式乘多项式,解题的关键是正确的计算.
2018长沙初二数学上册期末试题(二)
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
点评: 本题主要考查全等三角形的判定,先证明四边形ABCD是平行四边形是解题的关键.做题时从已知开始结合全等的判定方法由易到难逐个找寻.
6.下面获取数据的方法不正确的是( )
A. 我们班同学的身高用测量方法
B. 快捷了解历史资料情况用观察方法
C. 抛硬币看正反面的次数用实验方法
D. 全班同学最喜爱的体育活动用访问方法
考点: 调查收集数据的过程与方法.
分析: 根据实际问题逐项判断即可得到答案.
解答: 解:A、我们班同学的身高用测量方法是长度工具,可信度比较高;
B、快捷了解历史资料情况用观察方法的可信度很低;
C、抛硬币看正反面的次数用实验方法是事实事件,所以可信度很高;
D、全班同学最喜爱的体育活动用访问方法是事实事件,可信度很高.
故选:B.
点评: 本题考查了调查收集数据的过程与方法,通过本题也使学生了解了获得信息的方式方法.
7.用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是( )
A. SAS B. ASA C. AAS D. SSS
考点: 全等三角形的判定.
分析: 根据角平分线的作法判断,他所用到的方法是三边公理.
解答: 解:如图根据角平分线的作法,
(1)以O为圆心,以任意长为半径画弧交角的两边于A、B,所以OA=OB,
(2)分别以A、B为圆心,以大于 AB长为半径画弧,两弧相交于点C,所以AC=BC,
(3)作射线OC所以OC是△AOC与△BOC的公共边.
故它所用到的识别方法是边边边公理,即SSS.
故选D.
点评: 本题考查了全等三角形的判定;熟练掌握角平分线的作法是解本题的关键.
8.四个学生一起做乘法(x+3)(x+a),其中a>0,最后得出下列四个结果,其中正确的结果是( )
A. x2﹣2x﹣15 B. x2+8x+15 C. x2+2x﹣15 D. x2﹣8x+15
考点: 多项式乘多项式.
分析: 利用多项式与多项式相乘的法则求解即可.
解答: 解:(x+3)(x+a)=x2+(3+a)x+3a,
∵a>0,
∴(x+3)(x+a)=x2+(3+a)x+3a=x2+8x+15,
故选:B.
点评: 本题主要考查了多项式乘多项式,解题的关键是正确的计算.
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
点评: 本题主要考查全等三角形的判定,先证明四边形ABCD是平行四边形是解题的关键.做题时从已知开始结合全等的判定方法由易到难逐个找寻.
6.下面获取数据的方法不正确的是( )
A. 我们班同学的身高用测量方法
B. 快捷了解历史资料情况用观察方法
C. 抛硬币看正反面的次数用实验方法
D. 全班同学最喜爱的体育活动用访问方法
考点: 调查收集数据的过程与方法.
分析: 根据实际问题逐项判断即可得到答案.
解答: 解:A、我们班同学的身高用测量方法是长度工具,可信度比较高;
B、快捷了解历史资料情况用观察方法的可信度很低;
C、抛硬币看正反面的次数用实验方法是事实事件,所以可信度很高;
D、全班同学最喜爱的体育活动用访问方法是事实事件,可信度很高.
故选:B.
点评: 本题考查了调查收集数据的过程与方法,通过本题也使学生了解了获得信息的方式方法.
7.用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是( )
A. SAS B. ASA C. AAS D. SSS
考点: 全等三角形的判定.
分析: 根据角平分线的作法判断,他所用到的方法是三边公理.
解答: 解:如图根据角平分线的作法,
(1)以O为圆心,以任意长为半径画弧交角的两边于A、B,所以OA=OB,
(2)分别以A、B为圆心,以大于 AB长为半径画弧,两弧相交于点C,所以AC=BC,
(3)作射线OC所以OC是△AOC与△BOC的公共边.
故它所用到的识别方法是边边边公理,即SSS.
故选D.
点评: 本题考查了全等三角形的判定;熟练掌握角平分线的作法是解本题的关键.
8.四个学生一起做乘法(x+3)(x+a),其中a>0,最后得出下列四个结果,其中正确的结果是( )
A. x2﹣2x﹣15 B. x2+8x+15 C. x2+2x﹣15 D. x2﹣8x+15
考点: 多项式乘多项式.
分析: 利用多项式与多项式相乘的法则求解即可.
解答: 解:(x+3)(x+a)=x2+(3+a)x+3a,
∵a>0,
∴(x+3)(x+a)=x2+(3+a)x+3a=x2+8x+15,
故选:B.
点评: 本题主要考查了多项式乘多项式,解题的关键是正确的计算.