高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。

  一、单科选考分析

  以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。

 高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  ↑表格来源:自主选拔在线,非官方数据仅供参考

  1、两个首选科目差距不大,偏文科人数较往年有所上涨

  首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。

  2、生物成热门,政治受冷落

  为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。

  一、单科选考分析

  以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。

 高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  ↑表格来源:自主选拔在线,非官方数据仅供参考

  1、两个首选科目差距不大,偏文科人数较往年有所上涨

  首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。

  2、生物成热门,政治受冷落

  为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。

2019长沙高一上学期数学知识点解读:不等式与不等式组的解

2019-11-21 来源: 网络整理 作者: 长晓学

扫码关注“长沙升学那些事”公众号

带你了解更多升学信息

  导读:高中的期末考试即将来临,期末考试作为检测学生一学年的学习情况,最后的考试显的尤为重要,长沙新东方高一学生们整理了高一数学的知识点解读,高中的知识点需要同学们融会贯通,活学活用,因此在做题时想要高效率的解答,对基础知识的理解和运用需要不断巩固,最后祝愿各位同学在即将到来的期末考试中取的好成绩!

  1.一元一次不等式的解法

  任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。

  例1:解关于x的不等式ax-2>b+2x

  解:原不等式化为(a-2)x>b+2

  ①当a>2时,其解集为(b+2a-2,+∞)

  ②当a<2时,其解集为(-∞,b+2a-2)

  ③当a=2,b≥-2时,其解集为φ

  ④当a=2且b<-2时,其解集为R.

  2.一元二次不等式的解法

  任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

  例2:解不等式ax2+4x+4>0(a>0)

  解:△=16-16a

  ①当a>1时,△<0,其解集为R

  ②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)

  ③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)

  3.不等式组的解法

  将不等式中每个不等式求得解集,然后求交集即可.

  例3:解不等式组m2+4m-5>0(1)

  m 2+4m-12<0(2)

  解:由①得m<-5或m>1

  由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)

  4.分式不等式的解法

  任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.

  例4:解不等式x2-x-6-x2-1>2

  解:原不等式化为:3x2-x-4-x2-1>0

  它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0

  解(I)得解集空集,解(II)得解集(-1,43).

  故原不等式的解集为(-1,43).

  5.含有绝对值不等式的解法

  去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。

  (1)|x|>a(a>0)x>a或x<-a.

  (2)|x|0)-a解:原不等式等价于3xx2-4≥1,①或3xx2-4≤-1②

  解①得2 解②得-4≤x<-2或1≤x<2

  故原不等式的解集为[-4,-2)∪(-2,-1]∪[1,2)∪(2,4].

  例6:解不等式|x2-3x+2|>x2-1

  解:原不等式等价于x2-3x+2>x2-1①或x2-3x+2<-x2+1②

  解①得{x|x<1},解②得{x|12g(x)和|f(x)|a和|x| 例7:解不等式|x+1|+|x|<2

  解:①当x≤-1时,原不等式变为-x-1-x<2 ∴-32 ②当-1 ∴-1 ③当x>0时,原不等式变为x+1+x<2.

  ∴解得0 综合①,②,③知,原不等式的解集为{x|-32 例8:解不等式|x2-3x+2|+|x2-4x+3|>2

  解:①当x≤1时,原不等式变为x2-3x+2+x2-4x+3>2,此时解集为{x|x<12}.

  ②当12,此时解集为空集。

  ③当22,此时的解集是空集。

  ④当x>3时,原不等式化为x2-3x+2+x2-4x+3>2,此时的解集为{x|x>3}.

  综合①②③④可知原不等式的解集为{x|x≤12}∪{x|x>3}.从以上两个例子可以看出,解含有两个或两个以上的绝对值的不等式,一般是先找出一些关键数(如例7的关键数是-1,0;例8中的关键数是1,2,3)这些关键数将实数划分为几个区间,在这些区间上,可以根据绝对值的意义去掉绝对值号,从而转化为不含绝对值的不等式,应当注意的是,在解这些不等式时,应该求出交集,最后综合各区间的解集写出答案。

  6.无理不等式的解法

  无理不等式f(x)>g(x)的解集为不等式组(I)f(x)≥[g(x)] 2f(x)≥0g(x)≥0和(II)f(x)≥0g(x)<0的解集的并集.

  无理不等式f(x)0)的解集为不等式组f(x)≥0f(x)<[g(x)] 2g(x)>0的解集.

  例9:解不等式:2x+5-x-1>0

  解:原不等式化为:2x+5>x+1 由此得不等式组(I)2x+5≥0x+1<0或(II)2x+5≥0x+1≥02x+5>(x+1)2

  解(I)得-52≤x<-1,解(II)得-1≤x<2

  故原不等式的解集为[-52,2].

  7.指数不等式的解法

  根据指数函数的单调性来解不等式。

  例10.解不等式:9x>(3)x+2

  解:原不等式化为 3 2x>3x+22

  ∴2x>x+22即x>23

  故原不等式解集为(23 ,+∞).

  8.对数不等式的解法

  根据对数函数的单调性来解不等式。

  例11:解不等式:log12(x+1)(2-x)>0

  解:原不等式化为log12(x+1)(2-x)>log121

  ∴ (x+1)(2-x)>0 (1)(x+1)(2-x)<1 (2)

  解①得-1 解②得x<1-52 或x>1+52

  故原不等式解集(-1,1-52)∪(1+52,2).

  9.简单高次不等式的解法

  简单高次不等式可以利用数轴标根法来解不等式.

  例12:解不等式(x+1)(x 2-5x+4)<0

  解:原不等式化为:(x+1)(x-1)(x-4)<0

  如图,由数轴标根法可得原不等式解集为(-∞,-1)∪(1,4)

  10.三角不等式的解法

  根据三角函数的单调性,先求出在同一周期内的解集,然后写出通值。

  例13:解不等式:sinx≤-12

  解:sinx≤-12在[0,2π]内的解是:76 π≤x≤116π

  故原不等式的解集为[2kπ+76 ,2kπ+116 ](k∈z)。

  11.含有字母系数不等式的解法

  在解不等式过程中,还常常遇到含有字母系数的一些不等式,此时,一定要注意字母系数进行讨论,以保证解题的完备性。

  例14:解不等式2 3x-2x 解:原不等式变形为2 2x(2 2x-1) ∴(2 2x-1) (2 2x-a)<0

  ∴原不等式等价于2 2x-1>02 2x-a<0 或2 2x-1<02 2x-a>0

  ①当a≤0时,x<0;

  ②当0 ③当a=1时,无解

  ④当a>1时,0 解不等式的基础是解一元一次不等式,解一元二次不等式,解由一元一次不等式和一元二次不等式组成的不等式组。解其它各式各样的不等式(三角不等式除外)关键在于根据有关的定义,定理,性质转化这些不等式为上述三类不等式。在具体转化的过程中,特别应该注意每一步都应是同解变形。像无理不等式中的开偶次方时的被开方数及对数不等式中的真数等,在去根号和去对数符号时,一定要使被开方数非负,真数大于零。

  延伸阅读:

  2019高一数学知识点:角度制与弧度制

  2019高一数学知识点:函数图像的变换

  2019高一数学知识点:基本初等函数的图像

  2019高一数学知识点:函数倍角公式

  2019高一数学知识点:集合与函数

  • 相关推荐
  • 免费申请学习规划

    附近校区展示
    浏城桥教学区
    湖南省长沙市芙蓉中路二段99号东成大厦
    0731-84885588
    东塘北教学区
    长沙市韶山北路438号杂技团4楼
    0731-84887360
    沁园春教学区
    湖南省长沙市岳麓区银盆南路金荣科技园M1组团B座五楼
    0731-84887325
    湘江世纪城教学区
    湖南省长沙市开福区福城路98号顺天黄金海岸酒店3楼
    0731-84887333
    雨花家园教学区
    长沙市万家丽仁和雨花家园38栋101房2楼
    0731-84887313
    长沙新东方官微 升学那些事

    更多一手课程报名优惠
    请扫描关注
    新东方长沙学校官方微信

    升初名校真题
    中考历年真题
    一键扫描获取!!!

    经营许可证编号: 京ICP备05067667号-32 | 京ICP证060601号| 京网文(2016)5762-750号 | 京公网安备11010802021790号

    Copyright © 2011-2020 Neworiental Corporation, All Rights Reserved

    新媒体平台资质审核电话:010-60908000-8941

    咨询 微博 课程 校区 建议
    新东方网>长沙新东方学校>高考>高一>知识点>数学>正文
    2019长沙高一上学期数学知识点解读:不等式与不等式组的解
    2019-11-21 来源: 网络整理 作者: 长晓学

    找资料、找老师、找方法?

    即刻定制你的学习方法!

    我要定制

    扫码关注“长沙升学那些事”公众号

    带你了解更多升学信息

      导读:高中的期末考试即将来临,期末考试作为检测学生一学年的学习情况,最后的考试显的尤为重要,长沙新东方高一学生们整理了高一数学的知识点解读,高中的知识点需要同学们融会贯通,活学活用,因此在做题时想要高效率的解答,对基础知识的理解和运用需要不断巩固,最后祝愿各位同学在即将到来的期末考试中取的好成绩!

      1.一元一次不等式的解法

      任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。

      例1:解关于x的不等式ax-2>b+2x

      解:原不等式化为(a-2)x>b+2

      ①当a>2时,其解集为(b+2a-2,+∞)

      ②当a<2时,其解集为(-∞,b+2a-2)

      ③当a=2,b≥-2时,其解集为φ

      ④当a=2且b<-2时,其解集为R.

      2.一元二次不等式的解法

      任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。

      例2:解不等式ax2+4x+4>0(a>0)

      解:△=16-16a

      ①当a>1时,△<0,其解集为R

      ②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)

      ③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)

      3.不等式组的解法

      将不等式中每个不等式求得解集,然后求交集即可.

      例3:解不等式组m2+4m-5>0(1)

      m 2+4m-12<0(2)

      解:由①得m<-5或m>1

      由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)

      4.分式不等式的解法

      任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.

      例4:解不等式x2-x-6-x2-1>2

      解:原不等式化为:3x2-x-4-x2-1>0

      它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0

      解(I)得解集空集,解(II)得解集(-1,43).

      故原不等式的解集为(-1,43).

      5.含有绝对值不等式的解法

      去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。

      (1)|x|>a(a>0)x>a或x<-a.

      (2)|x|0)-a解:原不等式等价于3xx2-4≥1,①或3xx2-4≤-1②

      解①得2 解②得-4≤x<-2或1≤x<2

      故原不等式的解集为[-4,-2)∪(-2,-1]∪[1,2)∪(2,4].

      例6:解不等式|x2-3x+2|>x2-1

      解:原不等式等价于x2-3x+2>x2-1①或x2-3x+2<-x2+1②

      解①得{x|x<1},解②得{x|12g(x)和|f(x)|a和|x| 例7:解不等式|x+1|+|x|<2

      解:①当x≤-1时,原不等式变为-x-1-x<2 ∴-32 ②当-1 ∴-1 ③当x>0时,原不等式变为x+1+x<2.

      ∴解得0 综合①,②,③知,原不等式的解集为{x|-32 例8:解不等式|x2-3x+2|+|x2-4x+3|>2

      解:①当x≤1时,原不等式变为x2-3x+2+x2-4x+3>2,此时解集为{x|x<12}.

      ②当12,此时解集为空集。

      ③当22,此时的解集是空集。

      ④当x>3时,原不等式化为x2-3x+2+x2-4x+3>2,此时的解集为{x|x>3}.

      综合①②③④可知原不等式的解集为{x|x≤12}∪{x|x>3}.从以上两个例子可以看出,解含有两个或两个以上的绝对值的不等式,一般是先找出一些关键数(如例7的关键数是-1,0;例8中的关键数是1,2,3)这些关键数将实数划分为几个区间,在这些区间上,可以根据绝对值的意义去掉绝对值号,从而转化为不含绝对值的不等式,应当注意的是,在解这些不等式时,应该求出交集,最后综合各区间的解集写出答案。

      6.无理不等式的解法

      无理不等式f(x)>g(x)的解集为不等式组(I)f(x)≥[g(x)] 2f(x)≥0g(x)≥0和(II)f(x)≥0g(x)<0的解集的并集.

      无理不等式f(x)0)的解集为不等式组f(x)≥0f(x)<[g(x)] 2g(x)>0的解集.

      例9:解不等式:2x+5-x-1>0

      解:原不等式化为:2x+5>x+1 由此得不等式组(I)2x+5≥0x+1<0或(II)2x+5≥0x+1≥02x+5>(x+1)2

      解(I)得-52≤x<-1,解(II)得-1≤x<2

      故原不等式的解集为[-52,2].

      7.指数不等式的解法

      根据指数函数的单调性来解不等式。

      例10.解不等式:9x>(3)x+2

      解:原不等式化为 3 2x>3x+22

      ∴2x>x+22即x>23

      故原不等式解集为(23 ,+∞).

      8.对数不等式的解法

      根据对数函数的单调性来解不等式。

      例11:解不等式:log12(x+1)(2-x)>0

      解:原不等式化为log12(x+1)(2-x)>log121

      ∴ (x+1)(2-x)>0 (1)(x+1)(2-x)<1 (2)

      解①得-1 解②得x<1-52 或x>1+52

      故原不等式解集(-1,1-52)∪(1+52,2).

      9.简单高次不等式的解法

      简单高次不等式可以利用数轴标根法来解不等式.

      例12:解不等式(x+1)(x 2-5x+4)<0

      解:原不等式化为:(x+1)(x-1)(x-4)<0

      如图,由数轴标根法可得原不等式解集为(-∞,-1)∪(1,4)

      10.三角不等式的解法

      根据三角函数的单调性,先求出在同一周期内的解集,然后写出通值。

      例13:解不等式:sinx≤-12

      解:sinx≤-12在[0,2π]内的解是:76 π≤x≤116π

      故原不等式的解集为[2kπ+76 ,2kπ+116 ](k∈z)。

      11.含有字母系数不等式的解法

      在解不等式过程中,还常常遇到含有字母系数的一些不等式,此时,一定要注意字母系数进行讨论,以保证解题的完备性。

      例14:解不等式2 3x-2x 解:原不等式变形为2 2x(2 2x-1) ∴(2 2x-1) (2 2x-a)<0

      ∴原不等式等价于2 2x-1>02 2x-a<0 或2 2x-1<02 2x-a>0

      ①当a≤0时,x<0;

      ②当0 ③当a=1时,无解

      ④当a>1时,0 解不等式的基础是解一元一次不等式,解一元二次不等式,解由一元一次不等式和一元二次不等式组成的不等式组。解其它各式各样的不等式(三角不等式除外)关键在于根据有关的定义,定理,性质转化这些不等式为上述三类不等式。在具体转化的过程中,特别应该注意每一步都应是同解变形。像无理不等式中的开偶次方时的被开方数及对数不等式中的真数等,在去根号和去对数符号时,一定要使被开方数非负,真数大于零。

      延伸阅读:

      2019高一数学知识点:角度制与弧度制

      2019高一数学知识点:函数图像的变换

      2019高一数学知识点:基本初等函数的图像

      2019高一数学知识点:函数倍角公式

      2019高一数学知识点:集合与函数

    展开本页剩余
    免费定制专属学习方案
    姓名
    电话
    年级
    我要定制

    高中工具箱

    学习资讯
    语文 数学 英语 物理 化学
    班级名称 课程介绍 课程咨询
    高一语文 理解高一语文知识重难点,制定高中学习计划
    高二语文 夯实高一基础,理解实记高二知识点
    高考语文 高度总结高考语文重难点,梳理知识脉络
    班级名称 课程介绍 课程咨询
    高一数学 讲解高一知识重难点,培养良好学习习惯
    高二数学 高二典型试题知识详解,传授高二学习方法
    高考数学 提炼难题知识点,脉络知识梳理冲刺高考
    班级名称 课程介绍 课程咨询
    高一英语 高一英语知识详解,传授高中英语学习方法
    高二英语 提炼归纳英语重难点,规划高二学习计划
    高考英语 深入渗透高中英语知识,梳理知识体系
    班级名称 课程介绍 课程咨询
    高一物理 重难点详解,培养高中物理学习素养
    高二物理 突破高二知识难点,独到中学生服务体系
    高考物理 主讲高考知识点及难题,梳理知识体系
    班级名称 课程介绍 课程咨询
    高一化学 高一化学重难点详解,规划高中学习计划
    高二化学 典型例题及知识点解读,梳理学习脉络
    高考化学 巩固复习高中化学知识点,冲刺高考
    附近校区展示
    浏城桥教学区
    湖南省长沙市芙蓉中路二段99号东成大厦
    0731-84885588
    东塘北教学区
    长沙市韶山北路438号杂技团4楼
    0731-84887360
    沁园春教学区
    湖南省长沙市岳麓区银盆南路金荣科技园M1组团B座五楼
    0731-84887325
    湘江世纪城教学区
    湖南省长沙市开福区福城路98号顺天黄金海岸酒店3楼
    0731-84887333
    雨花家园教学区
    长沙市万家丽仁和雨花家园38栋101房2楼
    0731-84887313
    长沙新东方官微
    更多一手课程报名优惠
    请关注扫描
    新东方长沙学校官方微信
    Copyright 2011-2021 Neworiental Corporation
    All Rights Reserved