导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。
一、单科选考分析
以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。
↑表格来源:自主选拔在线,非官方数据仅供参考
1、两个首选科目差距不大,偏文科人数较往年有所上涨
首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。
说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。
2、生物成热门,政治受冷落
为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:
从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。
导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。
一、单科选考分析
以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。
↑表格来源:自主选拔在线,非官方数据仅供参考
1、两个首选科目差距不大,偏文科人数较往年有所上涨
首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。
说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。
2、生物成热门,政治受冷落
为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:
从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。
2017年长沙市浏阳数学中考模拟题(二)
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
23.【解答】(1)证明:连接OD,∵OC=OD,∴∠C=∠ODC,
∵OC⊥AB,∴∠COF=90°,∴∠OCD+∠CFO=90°,
∵GE为⊙O的切线,∴∠ODC+∠EDF=90°,∵∠EFD=∠CFO,
∴∠EFD=∠EDF,∴EF=ED.
(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,
∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,
∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,
∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,
而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴ = ,即 = ,∴AG=6.
24.【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.
(2)盈利=总售价﹣总进价.
【解答】解:(1)设第一批购进书包的单价是x元.
则: ×3= .解得:x=80.经检验:x=80是原方程的根.
答:第一批购进书包的单价是80元.
(2) ×(120﹣80)+ ×(120﹣84)=3700(元).
答:商店共盈利3700元.
25.【解析】 试题分析:根据勾股定理求出AC的长度,根据平移的性质得出PQ∥AB,然后得出相似比,求出t的值;作PD⊥BC于点D,AE⊥BC于点E,根据△ABC的面积求出AE的长度,根据勾股定理求出CE的长度,根据PD⊥BC,AE⊥BC得出△CPD∽△CAE,从而得到PD、CD的长度,根据题意得出h=PD,然后求出y与t的函数关系式;根据PM∥BC,得到 若S△QMC∶S四边形ABQP=1∶4,则S△QMC∶S△ABC=1∶5,然后根据函数解析式求出t的值;得出答案;根据题意得出△MQP∽△PDQ,即 ,根据CD求出DQ的长度,然后得出一元二次方程求出t的值.
试题解析:(1)在Rt△ABC中,由勾股定理得: 由平移性质可得MN∥AB;因为PQ∥MN,所以PQ∥AB,所以 ,即 ,解得
(2)、作PD⊥BC于点D,AE⊥BC于点E由 可得
更多一手课程报名优惠
请扫描关注
新东方长沙学校官方微信
升初名校真题
中考历年真题
一键扫描获取!!!
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
23.【解答】(1)证明:连接OD,∵OC=OD,∴∠C=∠ODC,
∵OC⊥AB,∴∠COF=90°,∴∠OCD+∠CFO=90°,
∵GE为⊙O的切线,∴∠ODC+∠EDF=90°,∵∠EFD=∠CFO,
∴∠EFD=∠EDF,∴EF=ED.
(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,
∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,
∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,
∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,
而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴ = ,即 = ,∴AG=6.
24.【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.
(2)盈利=总售价﹣总进价.
【解答】解:(1)设第一批购进书包的单价是x元.
则: ×3= .解得:x=80.经检验:x=80是原方程的根.
答:第一批购进书包的单价是80元.
(2) ×(120﹣80)+ ×(120﹣84)=3700(元).
答:商店共盈利3700元.
25.【解析】 试题分析:根据勾股定理求出AC的长度,根据平移的性质得出PQ∥AB,然后得出相似比,求出t的值;作PD⊥BC于点D,AE⊥BC于点E,根据△ABC的面积求出AE的长度,根据勾股定理求出CE的长度,根据PD⊥BC,AE⊥BC得出△CPD∽△CAE,从而得到PD、CD的长度,根据题意得出h=PD,然后求出y与t的函数关系式;根据PM∥BC,得到 若S△QMC∶S四边形ABQP=1∶4,则S△QMC∶S△ABC=1∶5,然后根据函数解析式求出t的值;得出答案;根据题意得出△MQP∽△PDQ,即 ,根据CD求出DQ的长度,然后得出一元二次方程求出t的值.
试题解析:(1)在Rt△ABC中,由勾股定理得: 由平移性质可得MN∥AB;因为PQ∥MN,所以PQ∥AB,所以 ,即 ,解得
(2)、作PD⊥BC于点D,AE⊥BC于点E由 可得
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一语文 | 理解高一语文知识重难点,制定高中学习计划 | |
高二语文 | 夯实高一基础,理解实记高二知识点 | |
高考语文 | 高度总结高考语文重难点,梳理知识脉络 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一数学 | 讲解高一知识重难点,培养良好学习习惯 | |
高二数学 | 高二典型试题知识详解,传授高二学习方法 | |
高考数学 | 提炼难题知识点,脉络知识梳理冲刺高考 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一英语 | 高一英语知识详解,传授高中英语学习方法 | |
高二英语 | 提炼归纳英语重难点,规划高二学习计划 | |
高考英语 | 深入渗透高中英语知识,梳理知识体系 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一物理 | 重难点详解,培养高中物理学习素养 | |
高二物理 | 突破高二知识难点,独到中学生服务体系 | |
高考物理 | 主讲高考知识点及难题,梳理知识体系 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一化学 | 高一化学重难点详解,规划高中学习计划 | |
高二化学 | 典型例题及知识点解读,梳理学习脉络 | |
高考化学 | 巩固复习高中化学知识点,冲刺高考 |