导读:暑假即将结束,学生们进入初一年级后,面临着知识难度的增大。尤其在数学上,数学开始进入到中等数学时代,划分成了代数和几何两部分。代数由数字到字母,由常量到变量(函数),一些更为抽象的概念和理论都体现在初中数学中。几何部分要求孩子从计算性转变为论证性,需要有一定的空间想象能力,技巧性要求更高,全等变化、相似等问题在每年中考的压轴题中必然出现。在此,长沙新东方整理分享了2018年长沙初一数学知识点数据的收集与整理,以供学习与参考。希望对大家有帮助。
数据的收集与整理
1.数据的收集
1)方式:问卷调查、访谈、查阅资料、实地调查、试验、网上搜索等(根据具体情况合理地选择数据收集的方式).
2)步骤:(1)明确调查的问题和目的;(2)确定调查对象;(3)选择调查方式;(4)设计调查问题;(5)展开调查;(6)收集并整理数据;(7)分析数据,得出结论.
2.普查和抽样调查
1)普查:对所有考察对象进行全面调查叫普查
优点:可以直接获得总体情况;
缺点:总体中个体数目较多时,普查的工作量较大.
2)总体:所要考察的对象的全体叫总体
个体:组成总体的每一个考察对象叫做个体
1)抽样调查:从总体中抽取部分个体进行调查,这种调查叫做抽样调查
优点:调查范围小,节省时间、人力、物力及财力
缺点:没有普查得到的结果准确
样本:从总体中抽取的部分个体叫做总体的一个样本,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.
3.数据的表示
1)扇形统计图
概念:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小.
特点:(1)反映具体问题中的部分与总体的数量关系.
(2)只能得到各部分的百分比,得不到具体数量.
(3)在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比.
绘制扇形统计图的步骤:计算各部分占总体的百分比
计算各部分对应的扇形的圆心角的度数
画出扇形统计图,表上百分比
写出扇形统计图的名称
2)条形统计图:一般是由两条互相垂直的数轴和若干长方形组成,两条数轴分别表示两个不同的项目,长方形的高表示其中一个项目的数据.
特点:能清楚地表示出每个项目的具体数据.
3)频数直方图
(1)频数:在数据统计中每个对象出现的次数称为频数
(2)注意:频数能反映每个对象出现的频繁程度;所有对象的频数之和等于数据总数.
(3)绘制频数直方图的步骤:计算所给数据的最大值与最小值的差;决定组距和组数;确定分点;列频数分布表;绘制频数直方图
(4)频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上;纵轴(即长方形的高)表示各组数据的频数.
(5)频数直方图的优点:能更清晰、更直观地反映数据的整体状况.
4)折线统计图:用折线的起伏表示数据的增减变化.
4.统计图的选择
条形统计图:清楚地表示每个项目的具体数目
折线统计图:清楚地反映事物的变化情况
扇形统计图:清楚地表示出各部分在总体中所占的百分比
频数直方图: 能更清晰、更直观地反映数据的整体状况
延伸阅读:
2018年长沙初一数学知识点数据的收集与整理
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:暑假即将结束,学生们进入初一年级后,面临着知识难度的增大。尤其在数学上,数学开始进入到中等数学时代,划分成了代数和几何两部分。代数由数字到字母,由常量到变量(函数),一些更为抽象的概念和理论都体现在初中数学中。几何部分要求孩子从计算性转变为论证性,需要有一定的空间想象能力,技巧性要求更高,全等变化、相似等问题在每年中考的压轴题中必然出现。在此,长沙新东方整理分享了2018年长沙初一数学知识点数据的收集与整理,以供学习与参考。希望对大家有帮助。
数据的收集与整理
1.数据的收集
1)方式:问卷调查、访谈、查阅资料、实地调查、试验、网上搜索等(根据具体情况合理地选择数据收集的方式).
2)步骤:(1)明确调查的问题和目的;(2)确定调查对象;(3)选择调查方式;(4)设计调查问题;(5)展开调查;(6)收集并整理数据;(7)分析数据,得出结论.
2.普查和抽样调查
1)普查:对所有考察对象进行全面调查叫普查
优点:可以直接获得总体情况;
缺点:总体中个体数目较多时,普查的工作量较大.
2)总体:所要考察的对象的全体叫总体
个体:组成总体的每一个考察对象叫做个体
1)抽样调查:从总体中抽取部分个体进行调查,这种调查叫做抽样调查
优点:调查范围小,节省时间、人力、物力及财力
缺点:没有普查得到的结果准确
样本:从总体中抽取的部分个体叫做总体的一个样本,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.
3.数据的表示
1)扇形统计图
概念:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小.
特点:(1)反映具体问题中的部分与总体的数量关系.
(2)只能得到各部分的百分比,得不到具体数量.
(3)在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比.
绘制扇形统计图的步骤:计算各部分占总体的百分比
计算各部分对应的扇形的圆心角的度数
画出扇形统计图,表上百分比
写出扇形统计图的名称
2)条形统计图:一般是由两条互相垂直的数轴和若干长方形组成,两条数轴分别表示两个不同的项目,长方形的高表示其中一个项目的数据.
特点:能清楚地表示出每个项目的具体数据.
3)频数直方图
(1)频数:在数据统计中每个对象出现的次数称为频数
(2)注意:频数能反映每个对象出现的频繁程度;所有对象的频数之和等于数据总数.
(3)绘制频数直方图的步骤:计算所给数据的最大值与最小值的差;决定组距和组数;确定分点;列频数分布表;绘制频数直方图
(4)频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上;纵轴(即长方形的高)表示各组数据的频数.
(5)频数直方图的优点:能更清晰、更直观地反映数据的整体状况.
4)折线统计图:用折线的起伏表示数据的增减变化.
4.统计图的选择
条形统计图:清楚地表示每个项目的具体数目
折线统计图:清楚地反映事物的变化情况
扇形统计图:清楚地表示出各部分在总体中所占的百分比
频数直方图: 能更清晰、更直观地反映数据的整体状况
延伸阅读:
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:暑假即将结束,学生们进入初一年级后,面临着知识难度的增大。尤其在数学上,数学开始进入到中等数学时代,划分成了代数和几何两部分。代数由数字到字母,由常量到变量(函数),一些更为抽象的概念和理论都体现在初中数学中。几何部分要求孩子从计算性转变为论证性,需要有一定的空间想象能力,技巧性要求更高,全等变化、相似等问题在每年中考的压轴题中必然出现。在此,长沙新东方整理分享了2018年长沙初一数学知识点数据的收集与整理,以供学习与参考。希望对大家有帮助。
数据的收集与整理
1.数据的收集
1)方式:问卷调查、访谈、查阅资料、实地调查、试验、网上搜索等(根据具体情况合理地选择数据收集的方式).
2)步骤:(1)明确调查的问题和目的;(2)确定调查对象;(3)选择调查方式;(4)设计调查问题;(5)展开调查;(6)收集并整理数据;(7)分析数据,得出结论.
2.普查和抽样调查
1)普查:对所有考察对象进行全面调查叫普查
优点:可以直接获得总体情况;
缺点:总体中个体数目较多时,普查的工作量较大.
2)总体:所要考察的对象的全体叫总体
个体:组成总体的每一个考察对象叫做个体
1)抽样调查:从总体中抽取部分个体进行调查,这种调查叫做抽样调查
优点:调查范围小,节省时间、人力、物力及财力
缺点:没有普查得到的结果准确
样本:从总体中抽取的部分个体叫做总体的一个样本,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.
3.数据的表示
1)扇形统计图
概念:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小.
特点:(1)反映具体问题中的部分与总体的数量关系.
(2)只能得到各部分的百分比,得不到具体数量.
(3)在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比.
绘制扇形统计图的步骤:计算各部分占总体的百分比
计算各部分对应的扇形的圆心角的度数
画出扇形统计图,表上百分比
写出扇形统计图的名称
2)条形统计图:一般是由两条互相垂直的数轴和若干长方形组成,两条数轴分别表示两个不同的项目,长方形的高表示其中一个项目的数据.
特点:能清楚地表示出每个项目的具体数据.
3)频数直方图
(1)频数:在数据统计中每个对象出现的次数称为频数
(2)注意:频数能反映每个对象出现的频繁程度;所有对象的频数之和等于数据总数.
(3)绘制频数直方图的步骤:计算所给数据的最大值与最小值的差;决定组距和组数;确定分点;列频数分布表;绘制频数直方图
(4)频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上;纵轴(即长方形的高)表示各组数据的频数.
(5)频数直方图的优点:能更清晰、更直观地反映数据的整体状况.
4)折线统计图:用折线的起伏表示数据的增减变化.
4.统计图的选择
条形统计图:清楚地表示每个项目的具体数目
折线统计图:清楚地反映事物的变化情况
扇形统计图:清楚地表示出各部分在总体中所占的百分比
频数直方图: 能更清晰、更直观地反映数据的整体状况
延伸阅读: