导读:我国初、高中数学教学课程标准中都明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理。而数学能力的提高绝非一朝一夕,需要同学们对过往的知识进行反复的联系和筛选,形成融会贯通的知识网。在此,长沙新东方整理分享了2018年长沙初一数学知识点整式的加减,以供学习与参考。希望对大家有帮助。
一、代数式的概念
1、用字母表示数之后,可能用字母表示的有
(1)具有一定数量的数;(2)一些变化的规律;(3)数的运算法则和运算定律;(4)数量关系;(5)数学公式。
2、用字母表示数的意义
用字母表示数是代数的一个重要特点,它的优点在于能简明、扼要、准确地把数和数之间的关系表示出来,化特殊为一般,深刻地揭示数量之间的联系,为我们学习数学和应用数学带来方
便。
3、用字母表示数学公式
(1)加法、乘法的运算律;(2)平面图形的面积公式;(3)平面图形的周长公式;(4)立体图形的体积公式。
4、代数式的概念
用字母表示数之后,出现了一些用运算符号把数和表示数的字母连接起来的式子,我们把它们叫做代数式。
概念剖析:①运算符号指的是加、减、乘、除、乘方、绝对值,大中小括号以及以后要学到的开方符号,但不包括大于、小于号、等号等表示数量关系的关系符号;
②单个的数字和字母也是代数式。
③判断一个式子是否是代数式,只要看看它能否满足代数式的概念即可。
5、书写代数式的规定
(1)数字与字母、字母与字母相乘时,乘号可以省略不写或用“·”代替,省略乘号时,数字因数应写在字母因数的前面,数字是带分数时要改写成假分数,数字与数字相乘时仍要写“×”号。
(2)代数式中出现除法运算时,一般要写成分数的形式。
(3)用代数式表示某一个量时,代数式后面带有单位,如果代数式是和、差形式,要用括号把代数式括起来。
6、代数式的意义
代数式的意义是把代数式的数量关系翻译成用文字叙述的数量关系,即为读代数式
用语言把一个代数式的数学意义表示出来时,要正确表达式中所含有代数运算以及它们运算顺序,还要注意语言的简练准确。
7、单项式
由数与字母的积组成的代数式叫做单项式,其中数因数叫做单项式的系数,所有字母因数的指数之和叫做单项式的次数。单独的一个数或字母也叫做单项式。
概念剖析:①单项式是代数式中的一种特殊形式;
②要判断一个式子是否是单项式,只要看看它是否满足单项式的定义;
③单独的一个数作为单项式时,其系数就是它本身,次数为0;单独的一个字母作为
单项式时,
其系数就是1,次数为它本身的次数;
④若一个单项式的次数为 ,我们就叫该单项式 次单项式;
⑤单项式与单项式相等的条件:几个单项式完全相同。
二、代数式的计算
1、同类项
所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项。
概念剖析:判断同类项的标准有两条:(1)所含字母相同;(2)相同字母的指数也分别相同。即:“两相同,一关系;”两相同:所含字母相同、相同字母的指数也分别相同;一关系:字母与字母之间是乘积关系。
2、合并同类项
把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并。
合并同类项法则:(1)系数相加,所得结果作为系数;(2)字母和字母的指数不变。
3、去括号
去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项符号都不改变;(2)括号前是“ – ”号,把括号和它前面的“ – ”号去掉后,原括号里各项的符号都要改变。
4、整式的加减
整式的加减实质上就是合并同类项,如果有括号的就先去括号,然后合并同类项
概念剖析:整式加减运算的步骤:(1)去括号;(2)判断同类项;(3)合并同类项;
5、代数式的值的计算
用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫代数式的值。
求代数式的值要注意的问题:(1)字母的数值必须确保代数式有意义;(2)在代入数值计算之前要把代数式化到最简;(3)字母的取值保证它本身表示的数量有意义;(4)字母的取值不同,代数式的值也不同。
代数式的值的计算方法:①从已知出发去求未知(向前看);
②从未知出发去找未知和已知关系(回头看);
③从已知和未知同时出发待相遇去找未知和已知关系(来回赶);
三、探索规律
1、探索数量关系,运用符号表示规律,通过运算验证规律
2、用代数式表示简单问题中的数量关系,运用合并同类项,去括号等法则验证所探索的规律。
延伸阅读:
2018年长沙初一数学知识点整式的加减
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:我国初、高中数学教学课程标准中都明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理。而数学能力的提高绝非一朝一夕,需要同学们对过往的知识进行反复的联系和筛选,形成融会贯通的知识网。在此,长沙新东方整理分享了2018年长沙初一数学知识点整式的加减,以供学习与参考。希望对大家有帮助。
一、代数式的概念
1、用字母表示数之后,可能用字母表示的有
(1)具有一定数量的数;(2)一些变化的规律;(3)数的运算法则和运算定律;(4)数量关系;(5)数学公式。
2、用字母表示数的意义
用字母表示数是代数的一个重要特点,它的优点在于能简明、扼要、准确地把数和数之间的关系表示出来,化特殊为一般,深刻地揭示数量之间的联系,为我们学习数学和应用数学带来方
便。
3、用字母表示数学公式
(1)加法、乘法的运算律;(2)平面图形的面积公式;(3)平面图形的周长公式;(4)立体图形的体积公式。
4、代数式的概念
用字母表示数之后,出现了一些用运算符号把数和表示数的字母连接起来的式子,我们把它们叫做代数式。
概念剖析:①运算符号指的是加、减、乘、除、乘方、绝对值,大中小括号以及以后要学到的开方符号,但不包括大于、小于号、等号等表示数量关系的关系符号;
②单个的数字和字母也是代数式。
③判断一个式子是否是代数式,只要看看它能否满足代数式的概念即可。
5、书写代数式的规定
(1)数字与字母、字母与字母相乘时,乘号可以省略不写或用“·”代替,省略乘号时,数字因数应写在字母因数的前面,数字是带分数时要改写成假分数,数字与数字相乘时仍要写“×”号。
(2)代数式中出现除法运算时,一般要写成分数的形式。
(3)用代数式表示某一个量时,代数式后面带有单位,如果代数式是和、差形式,要用括号把代数式括起来。
6、代数式的意义
代数式的意义是把代数式的数量关系翻译成用文字叙述的数量关系,即为读代数式
用语言把一个代数式的数学意义表示出来时,要正确表达式中所含有代数运算以及它们运算顺序,还要注意语言的简练准确。
7、单项式
由数与字母的积组成的代数式叫做单项式,其中数因数叫做单项式的系数,所有字母因数的指数之和叫做单项式的次数。单独的一个数或字母也叫做单项式。
概念剖析:①单项式是代数式中的一种特殊形式;
②要判断一个式子是否是单项式,只要看看它是否满足单项式的定义;
③单独的一个数作为单项式时,其系数就是它本身,次数为0;单独的一个字母作为
单项式时,
其系数就是1,次数为它本身的次数;
④若一个单项式的次数为 ,我们就叫该单项式 次单项式;
⑤单项式与单项式相等的条件:几个单项式完全相同。
二、代数式的计算
1、同类项
所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项。
概念剖析:判断同类项的标准有两条:(1)所含字母相同;(2)相同字母的指数也分别相同。即:“两相同,一关系;”两相同:所含字母相同、相同字母的指数也分别相同;一关系:字母与字母之间是乘积关系。
2、合并同类项
把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并。
合并同类项法则:(1)系数相加,所得结果作为系数;(2)字母和字母的指数不变。
3、去括号
去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项符号都不改变;(2)括号前是“ – ”号,把括号和它前面的“ – ”号去掉后,原括号里各项的符号都要改变。
4、整式的加减
整式的加减实质上就是合并同类项,如果有括号的就先去括号,然后合并同类项
概念剖析:整式加减运算的步骤:(1)去括号;(2)判断同类项;(3)合并同类项;
5、代数式的值的计算
用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫代数式的值。
求代数式的值要注意的问题:(1)字母的数值必须确保代数式有意义;(2)在代入数值计算之前要把代数式化到最简;(3)字母的取值保证它本身表示的数量有意义;(4)字母的取值不同,代数式的值也不同。
代数式的值的计算方法:①从已知出发去求未知(向前看);
②从未知出发去找未知和已知关系(回头看);
③从已知和未知同时出发待相遇去找未知和已知关系(来回赶);
三、探索规律
1、探索数量关系,运用符号表示规律,通过运算验证规律
2、用代数式表示简单问题中的数量关系,运用合并同类项,去括号等法则验证所探索的规律。
延伸阅读:
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:我国初、高中数学教学课程标准中都明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理。而数学能力的提高绝非一朝一夕,需要同学们对过往的知识进行反复的联系和筛选,形成融会贯通的知识网。在此,长沙新东方整理分享了2018年长沙初一数学知识点整式的加减,以供学习与参考。希望对大家有帮助。
一、代数式的概念
1、用字母表示数之后,可能用字母表示的有
(1)具有一定数量的数;(2)一些变化的规律;(3)数的运算法则和运算定律;(4)数量关系;(5)数学公式。
2、用字母表示数的意义
用字母表示数是代数的一个重要特点,它的优点在于能简明、扼要、准确地把数和数之间的关系表示出来,化特殊为一般,深刻地揭示数量之间的联系,为我们学习数学和应用数学带来方
便。
3、用字母表示数学公式
(1)加法、乘法的运算律;(2)平面图形的面积公式;(3)平面图形的周长公式;(4)立体图形的体积公式。
4、代数式的概念
用字母表示数之后,出现了一些用运算符号把数和表示数的字母连接起来的式子,我们把它们叫做代数式。
概念剖析:①运算符号指的是加、减、乘、除、乘方、绝对值,大中小括号以及以后要学到的开方符号,但不包括大于、小于号、等号等表示数量关系的关系符号;
②单个的数字和字母也是代数式。
③判断一个式子是否是代数式,只要看看它能否满足代数式的概念即可。
5、书写代数式的规定
(1)数字与字母、字母与字母相乘时,乘号可以省略不写或用“·”代替,省略乘号时,数字因数应写在字母因数的前面,数字是带分数时要改写成假分数,数字与数字相乘时仍要写“×”号。
(2)代数式中出现除法运算时,一般要写成分数的形式。
(3)用代数式表示某一个量时,代数式后面带有单位,如果代数式是和、差形式,要用括号把代数式括起来。
6、代数式的意义
代数式的意义是把代数式的数量关系翻译成用文字叙述的数量关系,即为读代数式
用语言把一个代数式的数学意义表示出来时,要正确表达式中所含有代数运算以及它们运算顺序,还要注意语言的简练准确。
7、单项式
由数与字母的积组成的代数式叫做单项式,其中数因数叫做单项式的系数,所有字母因数的指数之和叫做单项式的次数。单独的一个数或字母也叫做单项式。
概念剖析:①单项式是代数式中的一种特殊形式;
②要判断一个式子是否是单项式,只要看看它是否满足单项式的定义;
③单独的一个数作为单项式时,其系数就是它本身,次数为0;单独的一个字母作为
单项式时,
其系数就是1,次数为它本身的次数;
④若一个单项式的次数为 ,我们就叫该单项式 次单项式;
⑤单项式与单项式相等的条件:几个单项式完全相同。
二、代数式的计算
1、同类项
所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项。
概念剖析:判断同类项的标准有两条:(1)所含字母相同;(2)相同字母的指数也分别相同。即:“两相同,一关系;”两相同:所含字母相同、相同字母的指数也分别相同;一关系:字母与字母之间是乘积关系。
2、合并同类项
把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并。
合并同类项法则:(1)系数相加,所得结果作为系数;(2)字母和字母的指数不变。
3、去括号
去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项符号都不改变;(2)括号前是“ – ”号,把括号和它前面的“ – ”号去掉后,原括号里各项的符号都要改变。
4、整式的加减
整式的加减实质上就是合并同类项,如果有括号的就先去括号,然后合并同类项
概念剖析:整式加减运算的步骤:(1)去括号;(2)判断同类项;(3)合并同类项;
5、代数式的值的计算
用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫代数式的值。
求代数式的值要注意的问题:(1)字母的数值必须确保代数式有意义;(2)在代入数值计算之前要把代数式化到最简;(3)字母的取值保证它本身表示的数量有意义;(4)字母的取值不同,代数式的值也不同。
代数式的值的计算方法:①从已知出发去求未知(向前看);
②从未知出发去找未知和已知关系(回头看);
③从已知和未知同时出发待相遇去找未知和已知关系(来回赶);
三、探索规律
1、探索数量关系,运用符号表示规律,通过运算验证规律
2、用代数式表示简单问题中的数量关系,运用合并同类项,去括号等法则验证所探索的规律。
延伸阅读: