导读:中考数学如何才能得高分?在考场上,学生们面对题目如果没有十分的把握,不要凭借主观臆断。在日常学习的过程中,要勤于练习。通过做综合题,可以知道不足所在,弥补不足,提高数学水平。多做练习要长期坚持,时间长了才会有明显的效果和较大的收获。在此,长沙新东方网整理了2019长沙中考数学复习:圆的练习之切线的性质,以供参考和学习。
2019年中考数学复习-圆的练习之切线的性质
PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()
A.1
B.1/2
C.3/5
D.2
考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义
分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.
解答:解:连接OA、OB、OP,延长BO交PA的延长线于点F.
∵PA,PB切⊙O于A、B两点,CD切⊙O于点E
∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,
∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,
∴PA=PB=.
在Rt△BFP和Rt△OAF中,
∴Rt△BFP∽RT△OAF.
∴===,
∴AF=FB,
在Rt△FBP中,
∵PF2﹣PB2=FB2
∴(PA+AF)2﹣PB2=FB2
∴(r+BF)2﹣()2=BF2,
解得BF=r,
∴tan∠APB===,
故选:B.
延伸阅读
2019长沙中考数学复习:圆的练习之切线的性质
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:中考数学如何才能得高分?在考场上,学生们面对题目如果没有十分的把握,不要凭借主观臆断。在日常学习的过程中,要勤于练习。通过做综合题,可以知道不足所在,弥补不足,提高数学水平。多做练习要长期坚持,时间长了才会有明显的效果和较大的收获。在此,长沙新东方网整理了2019长沙中考数学复习:圆的练习之切线的性质,以供参考和学习。
2019年中考数学复习-圆的练习之切线的性质
PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()
A.1
B.1/2
C.3/5
D.2
考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义
分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.
解答:解:连接OA、OB、OP,延长BO交PA的延长线于点F.
∵PA,PB切⊙O于A、B两点,CD切⊙O于点E
∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,
∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,
∴PA=PB=.
在Rt△BFP和Rt△OAF中,
∴Rt△BFP∽RT△OAF.
∴===,
∴AF=FB,
在Rt△FBP中,
∵PF2﹣PB2=FB2
∴(PA+AF)2﹣PB2=FB2
∴(r+BF)2﹣()2=BF2,
解得BF=r,
∴tan∠APB===,
故选:B.
延伸阅读
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:中考数学如何才能得高分?在考场上,学生们面对题目如果没有十分的把握,不要凭借主观臆断。在日常学习的过程中,要勤于练习。通过做综合题,可以知道不足所在,弥补不足,提高数学水平。多做练习要长期坚持,时间长了才会有明显的效果和较大的收获。在此,长沙新东方网整理了2019长沙中考数学复习:圆的练习之切线的性质,以供参考和学习。
2019年中考数学复习-圆的练习之切线的性质
PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()
A.1
B.1/2
C.3/5
D.2
考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义
分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.
解答:解:连接OA、OB、OP,延长BO交PA的延长线于点F.
∵PA,PB切⊙O于A、B两点,CD切⊙O于点E
∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,
∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,
∴PA=PB=.
在Rt△BFP和Rt△OAF中,
∴Rt△BFP∽RT△OAF.
∴===,
∴AF=FB,
在Rt△FBP中,
∵PF2﹣PB2=FB2
∴(PA+AF)2﹣PB2=FB2
∴(r+BF)2﹣()2=BF2,
解得BF=r,
∴tan∠APB===,
故选:B.
延伸阅读