24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C 作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB、DC、DF
(1) 求∠CDE的度数;
(2) 求证:DF是⊙O的切线;
(3) 若AC= DE,求tan∠ABD的值.
25.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L与顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系,此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1) 若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,求m,n的值;
(2) 若某“路线”L的顶点在反比例函数 的图像上,它的“带线” l的解析式为y=2x-4,求此“路线”L的解析式;
(3) 当常数k满足 ≤k≤2时,求抛物线L: y=ax2+(3k2-2k+1)x+ k的“带线” l与x轴,y轴所围成的三角形面积的取值范围.
26.如图,直线l:y=-x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
(1) 求△AOB的周长;
(2) 设AQ=t>0.试用含t的代数式表示点P的坐标;
(3) 当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记作∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
① 6a+3b+2c=0;
② 当m≤x≤m+2时,函数y的最大值等于 ,求二次项系数a的值.
延伸阅读
2016年长沙中考数学试题试卷及答案
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C 作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB、DC、DF
(1) 求∠CDE的度数;
(2) 求证:DF是⊙O的切线;
(3) 若AC= DE,求tan∠ABD的值.
25.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L与顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系,此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1) 若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,求m,n的值;
(2) 若某“路线”L的顶点在反比例函数 的图像上,它的“带线” l的解析式为y=2x-4,求此“路线”L的解析式;
(3) 当常数k满足 ≤k≤2时,求抛物线L: y=ax2+(3k2-2k+1)x+ k的“带线” l与x轴,y轴所围成的三角形面积的取值范围.
26.如图,直线l:y=-x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
(1) 求△AOB的周长;
(2) 设AQ=t>0.试用含t的代数式表示点P的坐标;
(3) 当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记作∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
① 6a+3b+2c=0;
② 当m≤x≤m+2时,函数y的最大值等于 ,求二次项系数a的值.
延伸阅读
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C 作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB、DC、DF
(1) 求∠CDE的度数;
(2) 求证:DF是⊙O的切线;
(3) 若AC= DE,求tan∠ABD的值.
25.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L与顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系,此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1) 若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,求m,n的值;
(2) 若某“路线”L的顶点在反比例函数 的图像上,它的“带线” l的解析式为y=2x-4,求此“路线”L的解析式;
(3) 当常数k满足 ≤k≤2时,求抛物线L: y=ax2+(3k2-2k+1)x+ k的“带线” l与x轴,y轴所围成的三角形面积的取值范围.
26.如图,直线l:y=-x+1与x轴,y轴分别交于A,B两点,点P,Q是直线l上的两个动点,且点P在第二象限,点Q在第四象限,∠POQ=135°.
(1) 求△AOB的周长;
(2) 设AQ=t>0.试用含t的代数式表示点P的坐标;
(3) 当动点P,Q在直线l上运动到使得△AOQ与△BPO的周长相等时,记作∠AOQ=m,若过点A的二次函数y=ax2+bx+c同时满足以下两个条件:
① 6a+3b+2c=0;
② 当m≤x≤m+2时,函数y的最大值等于 ,求二次项系数a的值.
延伸阅读