2020长沙中考数学分类讨论试题中的漏解现象分析

  导读:讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。下面将同学中出现的部分漏解现象进行分析,希望能帮助同学们提高分类讨论的能力。以下是2020长沙中考数学分类讨论试题中的漏解现象分析,以供各位初中学生参考,希望对大家有所帮助。

  一、概念不清,导致漏解

  对所学知识概念不清,领会不够深刻,导致答题不完整。

  例:已知(a-3)x>6,求x的取值范围。

  分析:根据不等式的性质“不等式的两边同乘或同除以不为零的负数,不等号的方向要改变”,而此题中(a-3)的符号并未确定,所以要分类讨论(a-3)的正负问题。

  例:若y2+(k+2)y+16是完全平方式,求k。

  分析:完全平方式中有两种情况:(a±b)2=a2±2ab+b2,而同学们往往容易忽略k+2=-8这一解。

  二、思维固定,导致漏解

  在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。

  例:若等腰三解形腰上的高等于腰长的一半、求底角。

  分析:据题意,由于等腰三解形既不可能是锐角等腰三解形也可能是钝角等腰三角形,所以腰上的高可能在三角形内部,也可能在外部。而同学们受习惯思维影响,大都忽略了高在三角形外的一种可能。

  例:若直角三角形三条边分别为3、4、c,求c的值。

  分析:此题中的c并不一定是代表斜边,也可能是直角边,而有些同学错误地将其与勾股定理中的c混淆起来,认为c一定是斜边,导致漏解。

  例:圆O的半径为5cm,两条互相平行的弦长分别为6cm、8cm,求两条弦之间的距离。

  分析:两条弦在圆中的位置关系可能在圆心的同侧或者在圆心的两侧,因此在解答时不能依据自己的习惯进行思考。

  三、忽视特殊性,导致漏解

  许多问题中存在着特殊情况,一旦忽视了这些特殊情况,往往容易导致漏解。

  例:已知抛物线y=x2及该抛物线上一点A(1,1)求与此抛物线只有一个公共点A的直线方程。

  分析:此题大部分同学设直线方程为y=kx+b,并与y=x2组成方程组,消去y,解得直线方程y=2x-1,但还有一条特殊的直线x=1也是符合题意的,这条直线中的k不存在,因而用以上方法求解必定会被遗漏。

  上述是同学们在解答基础题中经常出现的分类思考不全面的情况,而在利用分类讨论思想求解相关综合题有时比较复杂,在这里介绍一些方法,给同学们一些启示。

  首先,要严密审题,一字一句阅读,切勿匆匆看题。有时疏忽了一字一句,使该讨论的不讨论,即使讨论了也不全面,如题中出现的“线段”、“射线”或“直线”都是有区别的,不能把它们都当作“线段”去求解。

  例如:方程(a-1)x2-6x+4=0有实数根,则a的取值范围是多少?

  对此题,同学们往往认为只要利用“△”求解一元二次方程,但题中出现“方程”,应该既要考虑它可能是一元二次方程,也可能是一元一次方程,不应人为地缩小了a的范围仅当作一元二次方程去求解。

  其次,对可能出现的几种情况要全面考虑到,是否还有其他可能情况,争取做到全面、完整、勿缺、勿漏。

  例如:在∠ABC中,点D在射线AC上,AD=10,以D点为圆心,半径为5作圆交射线AB于E、F两点,EF=6,另在射线AC上取P点为圆心作圆,使圆P既与射线AB相切又与圆D相切,求圆P的半径。

  在此题的解答过程中要着重注意两个关键词“射线”和“相切”,特别是对“相切”要进行全面的分类讨论,先分为“外切”和“内切” 两种情况,且每种情况又要再考虑到与圆D相切的左右位置关系,因此最后圆P共有四种位置情况。

  再次,对综合题中可能出现的几种情况,要先想一想哪一种求解方便,就先解决这一种情况,这样容易得分,又节省时间,否则有时“卡住”,造成紧张心理,甚至没有时间去解一些简单的情况,造成失分。

  而对较难的一种情况求解,一时想不到其他解法,或者虽然能去求解,但过程非常复杂、繁琐,此时不妨退回来想一想:能否对较难的情况进行转化?或者找一个等价的问题去进行求解?这样说不定会找到较简捷、方便的方法,否则,若直接去求解,非常繁杂,耗费大量时间,还可能在运算中造成错误,这更是得不偿失。

  延伸阅读:

  延迟开学后,初三学生怎么做好中考备考计划?

  2020长沙中考数学:一定要记住的28个高频考点

  2020长沙中考:数学常用的10种经典解题方法

  2020长沙中考语文记叙文阅读常考题型及答题技巧

  2020长沙中考复习:怎么制定一个好的复习计划?

2020长沙中考数学分类讨论试题中的漏解现象分析

2020-03-02 来源: 网络整理 作者: 长晓习

扫码关注“长沙升学那些事”公众号

带你了解更多升学信息

  导读:讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。下面将同学中出现的部分漏解现象进行分析,希望能帮助同学们提高分类讨论的能力。以下是2020长沙中考数学分类讨论试题中的漏解现象分析,以供各位初中学生参考,希望对大家有所帮助。

  一、概念不清,导致漏解

  对所学知识概念不清,领会不够深刻,导致答题不完整。

  例:已知(a-3)x>6,求x的取值范围。

  分析:根据不等式的性质“不等式的两边同乘或同除以不为零的负数,不等号的方向要改变”,而此题中(a-3)的符号并未确定,所以要分类讨论(a-3)的正负问题。

  例:若y2+(k+2)y+16是完全平方式,求k。

  分析:完全平方式中有两种情况:(a±b)2=a2±2ab+b2,而同学们往往容易忽略k+2=-8这一解。

  二、思维固定,导致漏解

  在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。

  例:若等腰三解形腰上的高等于腰长的一半、求底角。

  分析:据题意,由于等腰三解形既不可能是锐角等腰三解形也可能是钝角等腰三角形,所以腰上的高可能在三角形内部,也可能在外部。而同学们受习惯思维影响,大都忽略了高在三角形外的一种可能。

  例:若直角三角形三条边分别为3、4、c,求c的值。

  分析:此题中的c并不一定是代表斜边,也可能是直角边,而有些同学错误地将其与勾股定理中的c混淆起来,认为c一定是斜边,导致漏解。

  例:圆O的半径为5cm,两条互相平行的弦长分别为6cm、8cm,求两条弦之间的距离。

  分析:两条弦在圆中的位置关系可能在圆心的同侧或者在圆心的两侧,因此在解答时不能依据自己的习惯进行思考。

  三、忽视特殊性,导致漏解

  许多问题中存在着特殊情况,一旦忽视了这些特殊情况,往往容易导致漏解。

  例:已知抛物线y=x2及该抛物线上一点A(1,1)求与此抛物线只有一个公共点A的直线方程。

  分析:此题大部分同学设直线方程为y=kx+b,并与y=x2组成方程组,消去y,解得直线方程y=2x-1,但还有一条特殊的直线x=1也是符合题意的,这条直线中的k不存在,因而用以上方法求解必定会被遗漏。

  上述是同学们在解答基础题中经常出现的分类思考不全面的情况,而在利用分类讨论思想求解相关综合题有时比较复杂,在这里介绍一些方法,给同学们一些启示。

  首先,要严密审题,一字一句阅读,切勿匆匆看题。有时疏忽了一字一句,使该讨论的不讨论,即使讨论了也不全面,如题中出现的“线段”、“射线”或“直线”都是有区别的,不能把它们都当作“线段”去求解。

  例如:方程(a-1)x2-6x+4=0有实数根,则a的取值范围是多少?

  对此题,同学们往往认为只要利用“△”求解一元二次方程,但题中出现“方程”,应该既要考虑它可能是一元二次方程,也可能是一元一次方程,不应人为地缩小了a的范围仅当作一元二次方程去求解。

  其次,对可能出现的几种情况要全面考虑到,是否还有其他可能情况,争取做到全面、完整、勿缺、勿漏。

  例如:在∠ABC中,点D在射线AC上,AD=10,以D点为圆心,半径为5作圆交射线AB于E、F两点,EF=6,另在射线AC上取P点为圆心作圆,使圆P既与射线AB相切又与圆D相切,求圆P的半径。

  在此题的解答过程中要着重注意两个关键词“射线”和“相切”,特别是对“相切”要进行全面的分类讨论,先分为“外切”和“内切” 两种情况,且每种情况又要再考虑到与圆D相切的左右位置关系,因此最后圆P共有四种位置情况。

  再次,对综合题中可能出现的几种情况,要先想一想哪一种求解方便,就先解决这一种情况,这样容易得分,又节省时间,否则有时“卡住”,造成紧张心理,甚至没有时间去解一些简单的情况,造成失分。

  而对较难的一种情况求解,一时想不到其他解法,或者虽然能去求解,但过程非常复杂、繁琐,此时不妨退回来想一想:能否对较难的情况进行转化?或者找一个等价的问题去进行求解?这样说不定会找到较简捷、方便的方法,否则,若直接去求解,非常繁杂,耗费大量时间,还可能在运算中造成错误,这更是得不偿失。

  延伸阅读:

  延迟开学后,初三学生怎么做好中考备考计划?

  2020长沙中考数学:一定要记住的28个高频考点

  2020长沙中考:数学常用的10种经典解题方法

  2020长沙中考语文记叙文阅读常考题型及答题技巧

  2020长沙中考复习:怎么制定一个好的复习计划?

精品课程

初一

初二

初三

课程名称 课程内容 适合学员 课程详细
初一英语 初一培优型课程,选择经典的新概念一册作为初一年级培优型课程教材,期间结合大量的听力口语能力练习,培养孩子的听说能力。 1、英语成绩优秀的初一学员
2、想想对所学知识进行深入学习和拓展训练的学员
查看
初一数学 该课程主要为七年级下册和八年级上册前半部分的同步训练加难度提升,适合基础比较好的初一学生。在课程的设计上,分层次地讲述基础知识点及其综合应用,在巩固基础的同时,加强难度的训练。 1、数学成绩优秀的初一学员
2、想想对所学知识进行深入学习和拓展训练的学员
查看
初一语文 以初一上学期的语文重点、难点知识为载体,利用优能独特的教学法,通过深入浅出的讲解帮助学员在初中开始阶段继续保持并提升优秀的学习成绩。 1、想学习初一上学期重点难点的知识学生
2、需要查缺补漏、复习初一知识的初二学生。
查看
初二英语 初二尖子培优型课程,对于新概念二册1-12课进行知识点的全面复习并在原有知识基础上进行巩固和加深,拓展高级写作句型给出真实语言情景,帮助学生全方位拓展英语综合能力的提升。 1、英语成绩优秀的的新初二学员
2、想学习初二上学期重点难点的知识学生
查看
初二数学 在教材知识的学习之上,对于重难点进行深入的了解和探究,加入名校考题以及竞赛试题,让学员掌握书本知识的同时拓展思维,强化数学解题的思维与方法。 1、数学成绩优秀的的新初二学员
2、想学习初二上学期重点难点的知识学生
查看
初二语文 总结复习初一语文在中考考纲中的知识点,预热初二语文所占中考的考点,以及对文言文阅读基本方法的了解和掌握。同时着力于加深学生对社科、人文的兴趣与了解。 1、语文成绩优秀的的新初二学员
2、想学习初二上学期重点难点的知识学生
查看
初二物理 本课程针对刚刚初一升初二的学生,讲授初二物理预科内容;课程主要分为运动,声,光,物态变化等版块。通过学习本册的知识模块培养学生的物理思维方式。 1、想学习初二上学期重点难点的知识学生
2、需要查缺补漏、复习初二知识的初三学生
查看
中考英语 中考培优型课程,配给语法、完型、阅读、写作、听力和口语各个板块的综合练习,各个击破学员的考试障碍;配合以中考中高难度习题,通过解析四大名校月考,期中,期末试卷以及中考真题阶梯式的学习题型帮助学员提升成绩。 1、英语成绩优秀的初二升初三学员
2、想想对所学知识进行深入学习和拓展训练的学员
查看
中考数学 一部分为压轴题目的训练,帮助学员解决压轴题,拿高分;另一部分为初三的重难点知识的预科学习,让学员在中考中拿下高分打下坚实的基础。 1、数学成绩优秀的初二升初三学员。
2、想对所学知识进行深入学习和拓展训练的学员。
查看
中考语文 总结复习初中语文在中考考纲中的知识点,并结合课内外例题巩固复习;侧重阅读题型识别与概括,并结合课内外名著,引导作文高效写法。 1、语文成绩优秀的初二升初三学员
2、想对所学知识进行深入学习和拓展训练的学员
查看
中考物理 课程内容主要是力学和热学两部分内容,帮助学生巩固中考中的重要模块—力学。力学题目的设置贴近中考难度;后半部分课程会预习初三的热学知识,提前帮助学生理解抽象的热学概 1、物理成绩中等或中等偏下的初二升初三学员
2、想巩固中学课程知识,有计划开始中考一轮复习的学员
查看
中考化学 巩固并扎实掌握九年级上册重难点:化学反应原理、计算及化学实验等部分内容,达到高级理解与运用的等级。帮助学员提高化学学习兴趣,掌握正确学习化学的方法。 1、学成绩优秀的初二升初三学员
2、想对所学知识进行深入学习和拓展训练的学员
查看

免费申请学习规划

长沙新东方官微 升学那些事

更多一手课程报名优惠
请扫描关注
新东方长沙学校官方微信

升初名校真题
中考历年真题
一键扫描获取!!!

经营许可证编号: 京ICP备05067667号-32 | 京ICP证060601号| 京网文(2016)5762-750号 | 京公网安备11010802021790号

Copyright © 2011-2020 Neworiental Corporation, All Rights Reserved

新媒体平台资质审核电话:010-60908000-8941

咨询 微博 课程 校区 建议 顶部
新东方网>长沙新东方学校>中考>学习资讯>复习方法>正文
2020长沙中考数学分类讨论试题中的漏解现象分析
2020-03-02 来源:网络整理 作者:长晓习

扫码关注“长沙升学那些事”公众号

带你了解更多升学信息

  导读:讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。下面将同学中出现的部分漏解现象进行分析,希望能帮助同学们提高分类讨论的能力。以下是2020长沙中考数学分类讨论试题中的漏解现象分析,以供各位初中学生参考,希望对大家有所帮助。

  一、概念不清,导致漏解

  对所学知识概念不清,领会不够深刻,导致答题不完整。

  例:已知(a-3)x>6,求x的取值范围。

  分析:根据不等式的性质“不等式的两边同乘或同除以不为零的负数,不等号的方向要改变”,而此题中(a-3)的符号并未确定,所以要分类讨论(a-3)的正负问题。

  例:若y2+(k+2)y+16是完全平方式,求k。

  分析:完全平方式中有两种情况:(a±b)2=a2±2ab+b2,而同学们往往容易忽略k+2=-8这一解。

  二、思维固定,导致漏解

  在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。

  例:若等腰三解形腰上的高等于腰长的一半、求底角。

  分析:据题意,由于等腰三解形既不可能是锐角等腰三解形也可能是钝角等腰三角形,所以腰上的高可能在三角形内部,也可能在外部。而同学们受习惯思维影响,大都忽略了高在三角形外的一种可能。

  例:若直角三角形三条边分别为3、4、c,求c的值。

  分析:此题中的c并不一定是代表斜边,也可能是直角边,而有些同学错误地将其与勾股定理中的c混淆起来,认为c一定是斜边,导致漏解。

  例:圆O的半径为5cm,两条互相平行的弦长分别为6cm、8cm,求两条弦之间的距离。

  分析:两条弦在圆中的位置关系可能在圆心的同侧或者在圆心的两侧,因此在解答时不能依据自己的习惯进行思考。

  三、忽视特殊性,导致漏解

  许多问题中存在着特殊情况,一旦忽视了这些特殊情况,往往容易导致漏解。

  例:已知抛物线y=x2及该抛物线上一点A(1,1)求与此抛物线只有一个公共点A的直线方程。

  分析:此题大部分同学设直线方程为y=kx+b,并与y=x2组成方程组,消去y,解得直线方程y=2x-1,但还有一条特殊的直线x=1也是符合题意的,这条直线中的k不存在,因而用以上方法求解必定会被遗漏。

  上述是同学们在解答基础题中经常出现的分类思考不全面的情况,而在利用分类讨论思想求解相关综合题有时比较复杂,在这里介绍一些方法,给同学们一些启示。

  首先,要严密审题,一字一句阅读,切勿匆匆看题。有时疏忽了一字一句,使该讨论的不讨论,即使讨论了也不全面,如题中出现的“线段”、“射线”或“直线”都是有区别的,不能把它们都当作“线段”去求解。

  例如:方程(a-1)x2-6x+4=0有实数根,则a的取值范围是多少?

  对此题,同学们往往认为只要利用“△”求解一元二次方程,但题中出现“方程”,应该既要考虑它可能是一元二次方程,也可能是一元一次方程,不应人为地缩小了a的范围仅当作一元二次方程去求解。

  其次,对可能出现的几种情况要全面考虑到,是否还有其他可能情况,争取做到全面、完整、勿缺、勿漏。

  例如:在∠ABC中,点D在射线AC上,AD=10,以D点为圆心,半径为5作圆交射线AB于E、F两点,EF=6,另在射线AC上取P点为圆心作圆,使圆P既与射线AB相切又与圆D相切,求圆P的半径。

  在此题的解答过程中要着重注意两个关键词“射线”和“相切”,特别是对“相切”要进行全面的分类讨论,先分为“外切”和“内切” 两种情况,且每种情况又要再考虑到与圆D相切的左右位置关系,因此最后圆P共有四种位置情况。

  再次,对综合题中可能出现的几种情况,要先想一想哪一种求解方便,就先解决这一种情况,这样容易得分,又节省时间,否则有时“卡住”,造成紧张心理,甚至没有时间去解一些简单的情况,造成失分。

  而对较难的一种情况求解,一时想不到其他解法,或者虽然能去求解,但过程非常复杂、繁琐,此时不妨退回来想一想:能否对较难的情况进行转化?或者找一个等价的问题去进行求解?这样说不定会找到较简捷、方便的方法,否则,若直接去求解,非常繁杂,耗费大量时间,还可能在运算中造成错误,这更是得不偿失。

  延伸阅读:

  延迟开学后,初三学生怎么做好中考备考计划?

  2020长沙中考数学:一定要记住的28个高频考点

  2020长沙中考:数学常用的10种经典解题方法

  2020长沙中考语文记叙文阅读常考题型及答题技巧

  2020长沙中考复习:怎么制定一个好的复习计划?

展开本页剩余
新东方课程优惠申请
姓名:
电话:
所属学段:
立即申请

中学工具箱

学校资讯
初一 初二 初三
班级名称 课程介绍 课程咨询
初一语文 以初一语文重点、难点知识为载体,通过深入浅出的讲解,帮助学员在初中开始阶段打好基础。
初一数学 分层次地讲述初一数学基础知识点及其综合应用,在巩固基础的同时,加强训练难度。
初一英语 初一培优型课程,课程结合大量的听力口语能力练习,培养孩子的听说能力。
班级名称 课程介绍 课程咨询
初二语文 总结复习初一语文知识点,预热初二语文所占中考的考点,加深学生对社科、人文的了解。
初二数学 在教材知识的学习之上,对于重难点进行深入的了解和探究,强化数学解题的思维与方法。
初二英语 在英语知识基础上进行巩固和加深,拓展高级写作句型,帮助学生全方位拓展英语综合能力。
班级名称 课程介绍 课程咨询
初三语文 立足于长沙中考,学习掌握初中语文答题技巧,加强阅读和写作能力。
初三数学 对标长沙中考能力要求,强化计算能力,锻炼数学思维以及解题技巧。
初三英语 培养学生英语学习兴趣,提升中考核心词汇量、阅读能力与听力水平。
附近校区展示
咸嘉新村教学区
湖南省长沙市岳麓区咸嘉湖西路与谷丰路交汇处润泽园安置小区C区2楼
0731-84885588
井湾子教学区
湖南省长沙市天心区友谊路56号2楼
0731-84885588
浏城桥教学区
湖南省长沙市芙蓉中路二段99号东成大厦新东方培训学校4楼
0731-84885588
梅溪湖教学区
湖南省长沙市岳麓区沐风路弘德西街2楼
0731-84885588
中信教学区
中意二路111号中信城市广场第1-4号栋203号房
0731-84885588
湘江世纪城教学区
湖南省长沙市开福区福城路98号顺天黄金海岸酒店3楼
0731-84887333
御溪国际教学区
湖南省长沙市雨花区迎新路499号御溪国际1栋二楼(德思勤城市广场对面)
0731-84887333
长沙新东方官微
更多一手课程报名优惠
请关注扫描
新东方长沙学校官方微信
Copyright 2011-2021 Neworiental Corporation
All Rights Reserved