2020长沙中考数学复习方法:初中数学重要题型的考试技巧

  导读:数学复习是一个系统的工程,许多同学都在想,如何才能掌握技巧,更好地利用宝贵有限的时间,让自己能够取得一个不错的成绩?其实在数学考试中,掌握一定的解题方法、技巧是非常重要的,尤其是针对数学考试不同题型,总结不同的解题方法。在此整理了初中各个题型的解题技巧给大家,希望大家能在将来中考获得好成绩。

  初中数学解题方法总结:

  一、选择题的解法

  1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

  2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

  在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

  3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

  4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;

  每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

  5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

  二、常用的数学思想方法

  1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;

  这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

  为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

  配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

  换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;

  则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法:由一般到特殊的推理方法。

  10、归纳法:由一般到特殊的推理方法。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;

  根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。

  类比法既可能是特殊到特殊,也可能一般到一般的推理。

  三、函数、方程、不等式

  常用的数学思想方法:

  (1)数形结合的思想方法。

  (2)待定系数法。

  (3)配方法。

  (4)联系与转化的思想。

  (5)图像的平移变换。

  四、证明角的相等

  1、对顶角相等。

  2、角(或同角)的补角相等或余角相等。

  3、两直线平行,同位角相等、内错角相等。

  4、凡直角都相等。

  5、角平分线分得的两个角相等。

  6、同一个三角形中,等边对等角。

  7、等腰三角形中,底边上的高(或中线)平分顶角。

  8、平行四边形的对角相等。

  9、菱形的每一条对角线平分一组对角。

  10、等腰梯形同一底上的两个角相等。

  11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。

  12、圆内接四边形的任何一个外角都等于它的内对角。

  13、同弧或等弧所对的圆周角相等。

  14、弦切角等于它所夹的弧对的圆周角。

  15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

  16、全等三角形的对应角相等。

  17、相似三角形的对应角相等。

  18、利用等量代换。

  19、利用代数或三角计算出角的度数相等

  20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。

  五、证明直线的平行或垂直

  1、证明两条直线平行的主要依据和方法:

  (1)定义、在同一平面内不相交的两条直线平行。

  (2)平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。

  (3)平行线的判定:同位角相等(内错角或同旁内角),两直线平行。

  (4)平行四边形的对边平行。

  (5)梯形的两底平行。

  (6)三角形(或梯形)的中位线平行与第三边(或两底)

  (7)一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

  2、证明两条直线垂直的主要依据和方法:

  (1)两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。

  (2)直角三角形的两直角边互相垂直。

  (3)三角形的两个锐角互余,则第三个内角为直角。

  (4)三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

  (5)三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

  (6)三角形(或多边形)一边上的高垂直于这边。

  (7)等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

  (8)矩形的两临边互相垂直。

  (9)菱形的对角线互相垂直。

  (10)平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。

  (11)半圆或直径所对的圆周角是直角。

  (12)圆的切线垂直于过切点的半径。

  (13)相交两圆的连心线垂直于两圆的公共弦。

  延伸阅读:

  怎么写好作文开头?初中作文万能开头写作技巧总结!

  关于2020新冠肺炎,初三中考备考要注意哪些热门话题?

  2020长沙初中生寒假生活怎么合理安排,要避免哪些坏习惯?

  2020长沙初中生在家学习如何安排自学进度?保证学习效率?

  2020长沙学校开学时间延迟:初中寒假预习各科重点是什么?

2020长沙中考数学复习方法:初中数学重要题型的考试技巧

2020-02-20 来源: 网络整理 作者: 长晓习

扫码关注“长沙升学那些事”公众号

带你了解更多升学信息

  导读:数学复习是一个系统的工程,许多同学都在想,如何才能掌握技巧,更好地利用宝贵有限的时间,让自己能够取得一个不错的成绩?其实在数学考试中,掌握一定的解题方法、技巧是非常重要的,尤其是针对数学考试不同题型,总结不同的解题方法。在此整理了初中各个题型的解题技巧给大家,希望大家能在将来中考获得好成绩。

  初中数学解题方法总结:

  一、选择题的解法

  1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

  2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

  在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

  3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

  4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;

  每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

  5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

  二、常用的数学思想方法

  1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;

  这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

  为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

  配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

  换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;

  则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法:由一般到特殊的推理方法。

  10、归纳法:由一般到特殊的推理方法。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;

  根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。

  类比法既可能是特殊到特殊,也可能一般到一般的推理。

  三、函数、方程、不等式

  常用的数学思想方法:

  (1)数形结合的思想方法。

  (2)待定系数法。

  (3)配方法。

  (4)联系与转化的思想。

  (5)图像的平移变换。

  四、证明角的相等

  1、对顶角相等。

  2、角(或同角)的补角相等或余角相等。

  3、两直线平行,同位角相等、内错角相等。

  4、凡直角都相等。

  5、角平分线分得的两个角相等。

  6、同一个三角形中,等边对等角。

  7、等腰三角形中,底边上的高(或中线)平分顶角。

  8、平行四边形的对角相等。

  9、菱形的每一条对角线平分一组对角。

  10、等腰梯形同一底上的两个角相等。

  11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。

  12、圆内接四边形的任何一个外角都等于它的内对角。

  13、同弧或等弧所对的圆周角相等。

  14、弦切角等于它所夹的弧对的圆周角。

  15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

  16、全等三角形的对应角相等。

  17、相似三角形的对应角相等。

  18、利用等量代换。

  19、利用代数或三角计算出角的度数相等

  20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。

  五、证明直线的平行或垂直

  1、证明两条直线平行的主要依据和方法:

  (1)定义、在同一平面内不相交的两条直线平行。

  (2)平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。

  (3)平行线的判定:同位角相等(内错角或同旁内角),两直线平行。

  (4)平行四边形的对边平行。

  (5)梯形的两底平行。

  (6)三角形(或梯形)的中位线平行与第三边(或两底)

  (7)一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

  2、证明两条直线垂直的主要依据和方法:

  (1)两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。

  (2)直角三角形的两直角边互相垂直。

  (3)三角形的两个锐角互余,则第三个内角为直角。

  (4)三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

  (5)三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

  (6)三角形(或多边形)一边上的高垂直于这边。

  (7)等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

  (8)矩形的两临边互相垂直。

  (9)菱形的对角线互相垂直。

  (10)平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。

  (11)半圆或直径所对的圆周角是直角。

  (12)圆的切线垂直于过切点的半径。

  (13)相交两圆的连心线垂直于两圆的公共弦。

  延伸阅读:

  怎么写好作文开头?初中作文万能开头写作技巧总结!

  关于2020新冠肺炎,初三中考备考要注意哪些热门话题?

  2020长沙初中生寒假生活怎么合理安排,要避免哪些坏习惯?

  2020长沙初中生在家学习如何安排自学进度?保证学习效率?

  2020长沙学校开学时间延迟:初中寒假预习各科重点是什么?

精品课程

初一

初二

初三

课程名称 课程内容 适合学员 课程详细
初一英语 初一培优型课程,选择经典的新概念一册作为初一年级培优型课程教材,期间结合大量的听力口语能力练习,培养孩子的听说能力。 1、英语成绩优秀的初一学员
2、想想对所学知识进行深入学习和拓展训练的学员
查看
初一数学 该课程主要为七年级下册和八年级上册前半部分的同步训练加难度提升,适合基础比较好的初一学生。在课程的设计上,分层次地讲述基础知识点及其综合应用,在巩固基础的同时,加强难度的训练。 1、数学成绩优秀的初一学员
2、想想对所学知识进行深入学习和拓展训练的学员
查看
初一语文 以初一上学期的语文重点、难点知识为载体,利用优能独特的教学法,通过深入浅出的讲解帮助学员在初中开始阶段继续保持并提升优秀的学习成绩。 1、想学习初一上学期重点难点的知识学生
2、需要查缺补漏、复习初一知识的初二学生。
查看
初二英语 初二尖子培优型课程,对于新概念二册1-12课进行知识点的全面复习并在原有知识基础上进行巩固和加深,拓展高级写作句型给出真实语言情景,帮助学生全方位拓展英语综合能力的提升。 1、英语成绩优秀的的新初二学员
2、想学习初二上学期重点难点的知识学生
查看
初二数学 在教材知识的学习之上,对于重难点进行深入的了解和探究,加入名校考题以及竞赛试题,让学员掌握书本知识的同时拓展思维,强化数学解题的思维与方法。 1、数学成绩优秀的的新初二学员
2、想学习初二上学期重点难点的知识学生
查看
初二语文 总结复习初一语文在中考考纲中的知识点,预热初二语文所占中考的考点,以及对文言文阅读基本方法的了解和掌握。同时着力于加深学生对社科、人文的兴趣与了解。 1、语文成绩优秀的的新初二学员
2、想学习初二上学期重点难点的知识学生
查看
初二物理 本课程针对刚刚初一升初二的学生,讲授初二物理预科内容;课程主要分为运动,声,光,物态变化等版块。通过学习本册的知识模块培养学生的物理思维方式。 1、想学习初二上学期重点难点的知识学生
2、需要查缺补漏、复习初二知识的初三学生
查看
中考英语 中考培优型课程,配给语法、完型、阅读、写作、听力和口语各个板块的综合练习,各个击破学员的考试障碍;配合以中考中高难度习题,通过解析四大名校月考,期中,期末试卷以及中考真题阶梯式的学习题型帮助学员提升成绩。 1、英语成绩优秀的初二升初三学员
2、想想对所学知识进行深入学习和拓展训练的学员
查看
中考数学 一部分为压轴题目的训练,帮助学员解决压轴题,拿高分;另一部分为初三的重难点知识的预科学习,让学员在中考中拿下高分打下坚实的基础。 1、数学成绩优秀的初二升初三学员。
2、想对所学知识进行深入学习和拓展训练的学员。
查看
中考语文 总结复习初中语文在中考考纲中的知识点,并结合课内外例题巩固复习;侧重阅读题型识别与概括,并结合课内外名著,引导作文高效写法。 1、语文成绩优秀的初二升初三学员
2、想对所学知识进行深入学习和拓展训练的学员
查看
中考物理 课程内容主要是力学和热学两部分内容,帮助学生巩固中考中的重要模块—力学。力学题目的设置贴近中考难度;后半部分课程会预习初三的热学知识,提前帮助学生理解抽象的热学概 1、物理成绩中等或中等偏下的初二升初三学员
2、想巩固中学课程知识,有计划开始中考一轮复习的学员
查看
中考化学 巩固并扎实掌握九年级上册重难点:化学反应原理、计算及化学实验等部分内容,达到高级理解与运用的等级。帮助学员提高化学学习兴趣,掌握正确学习化学的方法。 1、学成绩优秀的初二升初三学员
2、想对所学知识进行深入学习和拓展训练的学员
查看

免费申请学习规划

长沙新东方官微 升学那些事

更多一手课程报名优惠
请扫描关注
新东方长沙学校官方微信

升初名校真题
中考历年真题
一键扫描获取!!!

经营许可证编号: 京ICP备05067667号-32 | 京ICP证060601号| 京网文(2016)5762-750号 | 京公网安备11010802021790号

Copyright © 2011-2020 Neworiental Corporation, All Rights Reserved

新媒体平台资质审核电话:010-60908000-8941

咨询 微博 课程 校区 建议 顶部
新东方网>长沙新东方学校>中考>学习资讯>复习方法>正文
2020长沙中考数学复习方法:初中数学重要题型的考试技巧
2020-02-20 来源:网络整理 作者:长晓习

扫码关注“长沙升学那些事”公众号

带你了解更多升学信息

  导读:数学复习是一个系统的工程,许多同学都在想,如何才能掌握技巧,更好地利用宝贵有限的时间,让自己能够取得一个不错的成绩?其实在数学考试中,掌握一定的解题方法、技巧是非常重要的,尤其是针对数学考试不同题型,总结不同的解题方法。在此整理了初中各个题型的解题技巧给大家,希望大家能在将来中考获得好成绩。

  初中数学解题方法总结:

  一、选择题的解法

  1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

  2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

  在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

  3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。

  4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;

  每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。

  5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

  二、常用的数学思想方法

  1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;

  使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

  2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

  在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;

  这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

  为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

  配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

  换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;

  则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、演绎法:由一般到特殊的推理方法。

  10、归纳法:由一般到特殊的推理方法。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;

  根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。

  类比法既可能是特殊到特殊,也可能一般到一般的推理。

  三、函数、方程、不等式

  常用的数学思想方法:

  (1)数形结合的思想方法。

  (2)待定系数法。

  (3)配方法。

  (4)联系与转化的思想。

  (5)图像的平移变换。

  四、证明角的相等

  1、对顶角相等。

  2、角(或同角)的补角相等或余角相等。

  3、两直线平行,同位角相等、内错角相等。

  4、凡直角都相等。

  5、角平分线分得的两个角相等。

  6、同一个三角形中,等边对等角。

  7、等腰三角形中,底边上的高(或中线)平分顶角。

  8、平行四边形的对角相等。

  9、菱形的每一条对角线平分一组对角。

  10、等腰梯形同一底上的两个角相等。

  11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。

  12、圆内接四边形的任何一个外角都等于它的内对角。

  13、同弧或等弧所对的圆周角相等。

  14、弦切角等于它所夹的弧对的圆周角。

  15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

  16、全等三角形的对应角相等。

  17、相似三角形的对应角相等。

  18、利用等量代换。

  19、利用代数或三角计算出角的度数相等

  20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。

  五、证明直线的平行或垂直

  1、证明两条直线平行的主要依据和方法:

  (1)定义、在同一平面内不相交的两条直线平行。

  (2)平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。

  (3)平行线的判定:同位角相等(内错角或同旁内角),两直线平行。

  (4)平行四边形的对边平行。

  (5)梯形的两底平行。

  (6)三角形(或梯形)的中位线平行与第三边(或两底)

  (7)一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

  2、证明两条直线垂直的主要依据和方法:

  (1)两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。

  (2)直角三角形的两直角边互相垂直。

  (3)三角形的两个锐角互余,则第三个内角为直角。

  (4)三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

  (5)三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

  (6)三角形(或多边形)一边上的高垂直于这边。

  (7)等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

  (8)矩形的两临边互相垂直。

  (9)菱形的对角线互相垂直。

  (10)平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。

  (11)半圆或直径所对的圆周角是直角。

  (12)圆的切线垂直于过切点的半径。

  (13)相交两圆的连心线垂直于两圆的公共弦。

  延伸阅读:

  怎么写好作文开头?初中作文万能开头写作技巧总结!

  关于2020新冠肺炎,初三中考备考要注意哪些热门话题?

  2020长沙初中生寒假生活怎么合理安排,要避免哪些坏习惯?

  2020长沙初中生在家学习如何安排自学进度?保证学习效率?

  2020长沙学校开学时间延迟:初中寒假预习各科重点是什么?

展开本页剩余
新东方课程优惠申请
姓名:
电话:
所属学段:
立即申请

中学工具箱

学校资讯
初一 初二 初三
班级名称 课程介绍 课程咨询
初一语文 以初一语文重点、难点知识为载体,通过深入浅出的讲解,帮助学员在初中开始阶段打好基础。
初一数学 分层次地讲述初一数学基础知识点及其综合应用,在巩固基础的同时,加强训练难度。
初一英语 初一培优型课程,课程结合大量的听力口语能力练习,培养孩子的听说能力。
班级名称 课程介绍 课程咨询
初二语文 总结复习初一语文知识点,预热初二语文所占中考的考点,加深学生对社科、人文的了解。
初二数学 在教材知识的学习之上,对于重难点进行深入的了解和探究,强化数学解题的思维与方法。
初二英语 在英语知识基础上进行巩固和加深,拓展高级写作句型,帮助学生全方位拓展英语综合能力。
班级名称 课程介绍 课程咨询
初三语文 立足于长沙中考,学习掌握初中语文答题技巧,加强阅读和写作能力。
初三数学 对标长沙中考能力要求,强化计算能力,锻炼数学思维以及解题技巧。
初三英语 培养学生英语学习兴趣,提升中考核心词汇量、阅读能力与听力水平。
附近校区展示
咸嘉新村教学区
湖南省长沙市岳麓区咸嘉湖西路与谷丰路交汇处润泽园安置小区C区2楼
0731-84885588
井湾子教学区
湖南省长沙市天心区友谊路56号2楼
0731-84885588
浏城桥教学区
湖南省长沙市芙蓉中路二段99号东成大厦新东方培训学校4楼
0731-84885588
梅溪湖教学区
湖南省长沙市岳麓区沐风路弘德西街2楼
0731-84885588
中信教学区
中意二路111号中信城市广场第1-4号栋203号房
0731-84885588
湘江世纪城教学区
湖南省长沙市开福区福城路98号顺天黄金海岸酒店3楼
0731-84887333
御溪国际教学区
湖南省长沙市雨花区迎新路499号御溪国际1栋二楼(德思勤城市广场对面)
0731-84887333
长沙新东方官微
更多一手课程报名优惠
请关注扫描
新东方长沙学校官方微信
Copyright 2011-2021 Neworiental Corporation
All Rights Reserved