导读:与小学相比,初中的知识在深度和广度上都有较大的拓展。对于初中的学生来说 ,脑海当中还是小学学习的那些比较简单的知识,跨入一个新的阶段,接受难度更大的知识可能会感到不适应, 只有及时对错过的知识进行总结、并在短时间内做出反馈,才能做到知识的夯牢,以下是长沙新东方整理的有关2018长沙初一数学二次根式取值范围。
二次根式取值范围
1.二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。
知识点三:二次根式√a(a≥0)的非负性
√a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即
√a≥0(a≥0)。
注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。
延伸阅读
2018长沙初一数学二次根式取值范围
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:与小学相比,初中的知识在深度和广度上都有较大的拓展。对于初中的学生来说 ,脑海当中还是小学学习的那些比较简单的知识,跨入一个新的阶段,接受难度更大的知识可能会感到不适应, 只有及时对错过的知识进行总结、并在短时间内做出反馈,才能做到知识的夯牢,以下是长沙新东方整理的有关2018长沙初一数学二次根式取值范围。
二次根式取值范围
1.二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。
知识点三:二次根式√a(a≥0)的非负性
√a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即
√a≥0(a≥0)。
注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。
延伸阅读
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:与小学相比,初中的知识在深度和广度上都有较大的拓展。对于初中的学生来说 ,脑海当中还是小学学习的那些比较简单的知识,跨入一个新的阶段,接受难度更大的知识可能会感到不适应, 只有及时对错过的知识进行总结、并在短时间内做出反馈,才能做到知识的夯牢,以下是长沙新东方整理的有关2018长沙初一数学二次根式取值范围。
二次根式取值范围
1.二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。
知识点三:二次根式√a(a≥0)的非负性
√a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即
√a≥0(a≥0)。
注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。
延伸阅读