3. 已知抛物线y=a(x+3)(x-1)(a≠0),与x轴从左至右依次相交于A,B两点,与y轴相交于点C,经过点A的直线 与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,则当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
4. 如图,抛物线y=x2+bx+c经过B(-1,0),D(-2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式.
(2)是否存在点P,使∠APB=90°?若存在,求出点P的横坐标;若不存在,说明理由.
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒 个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中的用时t最少?
【参考答案】
1. (1)抛物线的表达式为y=-x2-2x+4;
(2)点G的坐标为(-2,4);
(3)①此时E(-2,0),H(0,-1);
② AM+CM的最小值为 .
2018年长沙初三数学试题:最值问题
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
3. 已知抛物线y=a(x+3)(x-1)(a≠0),与x轴从左至右依次相交于A,B两点,与y轴相交于点C,经过点A的直线 与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,则当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
4. 如图,抛物线y=x2+bx+c经过B(-1,0),D(-2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式.
(2)是否存在点P,使∠APB=90°?若存在,求出点P的横坐标;若不存在,说明理由.
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒 个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中的用时t最少?
【参考答案】
1. (1)抛物线的表达式为y=-x2-2x+4;
(2)点G的坐标为(-2,4);
(3)①此时E(-2,0),H(0,-1);
② AM+CM的最小值为 .
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
3. 已知抛物线y=a(x+3)(x-1)(a≠0),与x轴从左至右依次相交于A,B两点,与y轴相交于点C,经过点A的直线 与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,则当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
4. 如图,抛物线y=x2+bx+c经过B(-1,0),D(-2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式.
(2)是否存在点P,使∠APB=90°?若存在,求出点P的横坐标;若不存在,说明理由.
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒 个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中的用时t最少?
【参考答案】
1. (1)抛物线的表达式为y=-x2-2x+4;
(2)点G的坐标为(-2,4);
(3)①此时E(-2,0),H(0,-1);
② AM+CM的最小值为 .