导读:数学的学习注重的是实践,在初中数学的教学中要注重学生数学练习题的训练,如果只学习课本上的例题不注重平时课下的训练,这样学习的效果是不大的。学生无法应对在考试过程中数学题的千变万化的形态,如果不练习就无法正确地解答各类习题,学过的知识"雁过留声"不会有较深刻的印象。同学们一定要注重习题的训练,我们整理了分析特征转化相关试题,快来练习一下吧。
1. 如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A的坐标为(0,-1),顶点C在第一象限,直角顶点B在第四象限,且AB∥x轴.已知抛物线 过A,B两点,顶点为P.
(1)求点B,C的坐标.
(2)平移抛物线 ,使顶点P在直线AC上滑动,且与AC交于另一点Q.若点M在直线AC下方,且为平移前抛物线上的点,当以M,P,Q为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标.
2. 如图1,二次函数 的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.
(1)求直线AB和直线BC的解析式;
(2)如图2,直线AB上有一点K(3,4),将二次函数 沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,C的对应点分别为点A′,C′.当△A′C′K是直角三角形时,求t的值.
图1 图2
3. 已知抛物线C1:y=x2.如图1,平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1,C2于点B,D.
(1)求抛物线C2的解析式.
(2)探究四边形ODAB的形状,并证明你的结论.
2018年长沙初三数学试题:分析特征转化
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:数学的学习注重的是实践,在初中数学的教学中要注重学生数学练习题的训练,如果只学习课本上的例题不注重平时课下的训练,这样学习的效果是不大的。学生无法应对在考试过程中数学题的千变万化的形态,如果不练习就无法正确地解答各类习题,学过的知识"雁过留声"不会有较深刻的印象。同学们一定要注重习题的训练,我们整理了分析特征转化相关试题,快来练习一下吧。
1. 如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A的坐标为(0,-1),顶点C在第一象限,直角顶点B在第四象限,且AB∥x轴.已知抛物线 过A,B两点,顶点为P.
(1)求点B,C的坐标.
(2)平移抛物线 ,使顶点P在直线AC上滑动,且与AC交于另一点Q.若点M在直线AC下方,且为平移前抛物线上的点,当以M,P,Q为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标.
2. 如图1,二次函数 的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.
(1)求直线AB和直线BC的解析式;
(2)如图2,直线AB上有一点K(3,4),将二次函数 沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,C的对应点分别为点A′,C′.当△A′C′K是直角三角形时,求t的值.
图1 图2
3. 已知抛物线C1:y=x2.如图1,平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1,C2于点B,D.
(1)求抛物线C2的解析式.
(2)探究四边形ODAB的形状,并证明你的结论.
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:数学的学习注重的是实践,在初中数学的教学中要注重学生数学练习题的训练,如果只学习课本上的例题不注重平时课下的训练,这样学习的效果是不大的。学生无法应对在考试过程中数学题的千变万化的形态,如果不练习就无法正确地解答各类习题,学过的知识"雁过留声"不会有较深刻的印象。同学们一定要注重习题的训练,我们整理了分析特征转化相关试题,快来练习一下吧。
1. 如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A的坐标为(0,-1),顶点C在第一象限,直角顶点B在第四象限,且AB∥x轴.已知抛物线 过A,B两点,顶点为P.
(1)求点B,C的坐标.
(2)平移抛物线 ,使顶点P在直线AC上滑动,且与AC交于另一点Q.若点M在直线AC下方,且为平移前抛物线上的点,当以M,P,Q为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标.
2. 如图1,二次函数 的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.
(1)求直线AB和直线BC的解析式;
(2)如图2,直线AB上有一点K(3,4),将二次函数 沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,C的对应点分别为点A′,C′.当△A′C′K是直角三角形时,求t的值.
图1 图2
3. 已知抛物线C1:y=x2.如图1,平移抛物线C1得到抛物线C2,C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1,C2于点B,D.
(1)求抛物线C2的解析式.
(2)探究四边形ODAB的形状,并证明你的结论.