导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。
一、单科选考分析
以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。
↑表格来源:自主选拔在线,非官方数据仅供参考
1、两个首选科目差距不大,偏文科人数较往年有所上涨
首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。
说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。
2、生物成热门,政治受冷落
为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:
从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。
导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。
一、单科选考分析
以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。
↑表格来源:自主选拔在线,非官方数据仅供参考
1、两个首选科目差距不大,偏文科人数较往年有所上涨
首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。
说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。
2、生物成热门,政治受冷落
为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:
从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。
2018长沙高二数学学习方法之数学命题难点突破
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
例3 已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.
解析 充分性:当q=-1时,a1=p-1;当n≥2时,an=Sn-Sn-1=pn-1(p-1).于是当n≥1时,=p,即数列{an}为等比数列.
必要性:当n=1时,a1=S1=p+q;当n≥2时,an=Sn-Sn-1
=pn-1(p-1).因为p≠0且p≠1,于是=p.又因为数列{an}为等比数列,所以==p,即=p,解之得q=-1.
综上所述,q=-1为数列{an}为等比数列的充要条件.
突破 证明p是q的充要条件需要分两步:①充分性,把p作为已知条件,结合命题的前提条件,推出q;②必要性,把q作为已知条件,结合命题的前提条件,推出p.最后综上所述,可得p是q的充要条件.特别注意:充分条件的意义只在于保证结论成立,而不管它对结论成立是否必要;必要条件的意义只在于要使结论成立它必不可少,而不管它对结论成立是否充分.因此,在进行恒等变形或探求充要条件的过程中,只注意推导过程的充分性,其结果有可能缩小范围;只注意推导过程的必要性,其结果有可能扩大范围.
3. “简单逻辑联结词”的难点在于复合命题的真假性判断以及“命题的否定”与“否命题”的区分
例4 指出下列命题的真假.
(1) -1是奇数或偶数;
(2) 属于集合Q,也属于集合R;
(3) A?埭(A∪B).
解析 (1) 此命题为“p或q”的形式,其中p:-1是奇数;q:-1是偶数.因为p为真命题,所以原命题为真命题.
(2) 此命题为“p且q”的形式,其中p:属于集合Q;q:属于集合R.因为只有q为真命题,所以原命题为假命题.
(3) 此命题为“非p”的形式,其中p:A?哿(A∪B).因为p为真命题,所以原命题为假命题.
更多一手课程报名优惠
请扫描关注
新东方长沙学校官方微信
升初名校真题
中考历年真题
一键扫描获取!!!
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
例3 已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.
解析 充分性:当q=-1时,a1=p-1;当n≥2时,an=Sn-Sn-1=pn-1(p-1).于是当n≥1时,=p,即数列{an}为等比数列.
必要性:当n=1时,a1=S1=p+q;当n≥2时,an=Sn-Sn-1
=pn-1(p-1).因为p≠0且p≠1,于是=p.又因为数列{an}为等比数列,所以==p,即=p,解之得q=-1.
综上所述,q=-1为数列{an}为等比数列的充要条件.
突破 证明p是q的充要条件需要分两步:①充分性,把p作为已知条件,结合命题的前提条件,推出q;②必要性,把q作为已知条件,结合命题的前提条件,推出p.最后综上所述,可得p是q的充要条件.特别注意:充分条件的意义只在于保证结论成立,而不管它对结论成立是否必要;必要条件的意义只在于要使结论成立它必不可少,而不管它对结论成立是否充分.因此,在进行恒等变形或探求充要条件的过程中,只注意推导过程的充分性,其结果有可能缩小范围;只注意推导过程的必要性,其结果有可能扩大范围.
3. “简单逻辑联结词”的难点在于复合命题的真假性判断以及“命题的否定”与“否命题”的区分
例4 指出下列命题的真假.
(1) -1是奇数或偶数;
(2) 属于集合Q,也属于集合R;
(3) A?埭(A∪B).
解析 (1) 此命题为“p或q”的形式,其中p:-1是奇数;q:-1是偶数.因为p为真命题,所以原命题为真命题.
(2) 此命题为“p且q”的形式,其中p:属于集合Q;q:属于集合R.因为只有q为真命题,所以原命题为假命题.
(3) 此命题为“非p”的形式,其中p:A?哿(A∪B).因为p为真命题,所以原命题为假命题.
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一语文 | 理解高一语文知识重难点,制定高中学习计划 | |
高二语文 | 夯实高一基础,理解实记高二知识点 | |
高考语文 | 高度总结高考语文重难点,梳理知识脉络 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一数学 | 讲解高一知识重难点,培养良好学习习惯 | |
高二数学 | 高二典型试题知识详解,传授高二学习方法 | |
高考数学 | 提炼难题知识点,脉络知识梳理冲刺高考 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一英语 | 高一英语知识详解,传授高中英语学习方法 | |
高二英语 | 提炼归纳英语重难点,规划高二学习计划 | |
高考英语 | 深入渗透高中英语知识,梳理知识体系 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一物理 | 重难点详解,培养高中物理学习素养 | |
高二物理 | 突破高二知识难点,独到中学生服务体系 | |
高考物理 | 主讲高考知识点及难题,梳理知识体系 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一化学 | 高一化学重难点详解,规划高中学习计划 | |
高二化学 | 典型例题及知识点解读,梳理学习脉络 | |
高考化学 | 巩固复习高中化学知识点,冲刺高考 |