【答案】C
【解答】
C.
【解析】
试题分析:根据邻补角性质可得∠BEC=180°-40°=140°,然后算出∠AEC的度数,再根据两直线平行,内错角相等可得答案:
∵∠BED=40°,∴∠BEC=180°-40°=140°.
∵EA是∠CEB的平分线,∴∠AEC=70°.
∵AB∥CD,∴∠A=∠AEC=70°.
故选C.
考点:平行线的性质.
【天天练】2019/5/4-初一数学:几何图形初步(试题及答案)
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
【答案】C
【解答】
C.
【解析】
试题分析:根据邻补角性质可得∠BEC=180°-40°=140°,然后算出∠AEC的度数,再根据两直线平行,内错角相等可得答案:
∵∠BED=40°,∴∠BEC=180°-40°=140°.
∵EA是∠CEB的平分线,∴∠AEC=70°.
∵AB∥CD,∴∠A=∠AEC=70°.
故选C.
考点:平行线的性质.
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
【答案】C
【解答】
C.
【解析】
试题分析:根据邻补角性质可得∠BEC=180°-40°=140°,然后算出∠AEC的度数,再根据两直线平行,内错角相等可得答案:
∵∠BED=40°,∴∠BEC=180°-40°=140°.
∵EA是∠CEB的平分线,∴∠AEC=70°.
∵AB∥CD,∴∠A=∠AEC=70°.
故选C.
考点:平行线的性质.