【答案】A
【解答】 分析:根据已知可证△ABC∽△DEF,且△ABC和△DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF的周长、面积.
解答:解:因为在△ABC和△DEF中,AB=2DE,AC=2DF,
∴=2,
又∵∠A=∠D,
∴△ABC∽△DEF,且△ABC和△DEF的相似比为2,
∵△ABC的周长是16,面积是12,
∴△DEF的周长为16÷2=8,面积为12÷4=3,
故选A.
点评:本题难度中等,考查相似三角形的判定和性质,相似三角形周长的比等于相似比,面积的比等于相似比的平方.
【天天练】2018/7/12-初二数学三角形单项选择题(试题及答案)
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
【答案】A
【解答】 分析:根据已知可证△ABC∽△DEF,且△ABC和△DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF的周长、面积.
解答:解:因为在△ABC和△DEF中,AB=2DE,AC=2DF,
∴=2,
又∵∠A=∠D,
∴△ABC∽△DEF,且△ABC和△DEF的相似比为2,
∵△ABC的周长是16,面积是12,
∴△DEF的周长为16÷2=8,面积为12÷4=3,
故选A.
点评:本题难度中等,考查相似三角形的判定和性质,相似三角形周长的比等于相似比,面积的比等于相似比的平方.
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
【答案】A
【解答】 分析:根据已知可证△ABC∽△DEF,且△ABC和△DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF的周长、面积.
解答:解:因为在△ABC和△DEF中,AB=2DE,AC=2DF,
∴=2,
又∵∠A=∠D,
∴△ABC∽△DEF,且△ABC和△DEF的相似比为2,
∵△ABC的周长是16,面积是12,
∴△DEF的周长为16÷2=8,面积为12÷4=3,
故选A.
点评:本题难度中等,考查相似三角形的判定和性质,相似三角形周长的比等于相似比,面积的比等于相似比的平方.