导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。
一、单科选考分析
以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。
↑表格来源:自主选拔在线,非官方数据仅供参考
1、两个首选科目差距不大,偏文科人数较往年有所上涨
首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。
说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。
2、生物成热门,政治受冷落
为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:
从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。
导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。
一、单科选考分析
以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。
↑表格来源:自主选拔在线,非官方数据仅供参考
1、两个首选科目差距不大,偏文科人数较往年有所上涨
首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。
说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。
2、生物成热门,政治受冷落
为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:
从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。
2018年长沙初三数学试题:动态几何
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:数学的学习注重的是实践,在初中数学的教学中要注重学生数学练习题的训练,如果只学习课本上的例题不注重平时课下的训练,这样学习的效果是不大的。学生无法应对在考试过程中数学题的千变万化的形态,如果不练习就无法正确地解答各类习题,学过的知识"雁过留声"不会有较深刻的印象。同学们一定要注重习题的训练,我们整理了动态几何相关习题,快来练习一下吧。
1. 如图1,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.
(1)判断四边形ABCD的形状并加以证明.
(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B,C分别落在点B′,C′处,且B′C′经过点D,折痕与四边形的另一交点为Q.
①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);
②如果∠C=60°,那么 为何值时,B′P⊥AB.
2. 如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设
(1)当点F落在AC上时,用含n的代数式表示 的值;
(2)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.
3. 如图,已知平行四边形ABCD中,AB=3,AD=2,∠A=60°,点E为AB中点,过点E作l⊥AB,垂足为点E,点M是直线l上的一点.
(1)若平面内存在点N,使得以A,D,M,N为顶点的四边形为菱形,则这样的点N共有______个.
(2)连接MA,MD,若∠AMD不小于60°,且设符合题意的点M在直线l上可移动的距离为t,求t的范围.
4. 如图,在等腰直角三角形ABC中,AB=4,∠C=90°.点D在线段AC上,AD=2CD,点E,F在△ABC的边上,且满足
△DAF与△DEF全等,过点E作EG⊥AB于点G,求线段AG的长.
更多一手课程报名优惠
请扫描关注
新东方长沙学校官方微信
升初名校真题
中考历年真题
一键扫描获取!!!
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:数学的学习注重的是实践,在初中数学的教学中要注重学生数学练习题的训练,如果只学习课本上的例题不注重平时课下的训练,这样学习的效果是不大的。学生无法应对在考试过程中数学题的千变万化的形态,如果不练习就无法正确地解答各类习题,学过的知识"雁过留声"不会有较深刻的印象。同学们一定要注重习题的训练,我们整理了动态几何相关习题,快来练习一下吧。
1. 如图1,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.
(1)判断四边形ABCD的形状并加以证明.
(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B,C分别落在点B′,C′处,且B′C′经过点D,折痕与四边形的另一交点为Q.
①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);
②如果∠C=60°,那么 为何值时,B′P⊥AB.
2. 如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连接AF,BF,EF,过点F作GF⊥AF交AD于点G,设
(1)当点F落在AC上时,用含n的代数式表示 的值;
(2)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.
3. 如图,已知平行四边形ABCD中,AB=3,AD=2,∠A=60°,点E为AB中点,过点E作l⊥AB,垂足为点E,点M是直线l上的一点.
(1)若平面内存在点N,使得以A,D,M,N为顶点的四边形为菱形,则这样的点N共有______个.
(2)连接MA,MD,若∠AMD不小于60°,且设符合题意的点M在直线l上可移动的距离为t,求t的范围.
4. 如图,在等腰直角三角形ABC中,AB=4,∠C=90°.点D在线段AC上,AD=2CD,点E,F在△ABC的边上,且满足
△DAF与△DEF全等,过点E作EG⊥AB于点G,求线段AG的长.
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一语文 | 理解高一语文知识重难点,制定高中学习计划 | |
高二语文 | 夯实高一基础,理解实记高二知识点 | |
高考语文 | 高度总结高考语文重难点,梳理知识脉络 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一数学 | 讲解高一知识重难点,培养良好学习习惯 | |
高二数学 | 高二典型试题知识详解,传授高二学习方法 | |
高考数学 | 提炼难题知识点,脉络知识梳理冲刺高考 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一英语 | 高一英语知识详解,传授高中英语学习方法 | |
高二英语 | 提炼归纳英语重难点,规划高二学习计划 | |
高考英语 | 深入渗透高中英语知识,梳理知识体系 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一物理 | 重难点详解,培养高中物理学习素养 | |
高二物理 | 突破高二知识难点,独到中学生服务体系 | |
高考物理 | 主讲高考知识点及难题,梳理知识体系 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一化学 | 高一化学重难点详解,规划高中学习计划 | |
高二化学 | 典型例题及知识点解读,梳理学习脉络 | |
高考化学 | 巩固复习高中化学知识点,冲刺高考 |