三 、计算题:
17.计算:sin60°+|﹣5|﹣ (4015﹣π)0+(﹣1)2017+( )﹣1.
18.解不等式组:
四 、解答题:
19.已知反比例函数 ,当x=2时,y=3.
①求m的值;②当3≤x≤6时,求函数值y的取值范围.
20.为了解永康市某中学八年级学生的视力水平,从中抽查部分学生的视力情况,绘制了如图统计图:
(1)本次调查的样本容量是 ;
(2)请补全条形统计图,并求扇形统计图中“视力正常”的圆心角度数;
(3)该校八年级共有200位学生,请估计该校八年级视力正常的学生人数.
21.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元) 180 260 280 300
y(间) 100 60 50 40
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)
22.如图,甲、乙两数学兴趣小组测量山CD 的高度.甲小组在地面A处测量,乙小组在上坡B处测量,AB=200m.甲小组测得山顶D的仰角为45°,山坡B处的仰角为30°;乙小组测得山顶D 的仰角为58°.求山CD的高度(结果保留一位小数).参考数据: , ,供选用.
23.如图,已知C是弧AB的中点,OC交弦AB于点D.∠AOB=120°,AD=8.求OA的长.
24.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由.
2018年长沙中考数学模拟卷(四)
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
三 、计算题:
17.计算:sin60°+|﹣5|﹣ (4015﹣π)0+(﹣1)2017+( )﹣1.
18.解不等式组:
四 、解答题:
19.已知反比例函数 ,当x=2时,y=3.
①求m的值;②当3≤x≤6时,求函数值y的取值范围.
20.为了解永康市某中学八年级学生的视力水平,从中抽查部分学生的视力情况,绘制了如图统计图:
(1)本次调查的样本容量是 ;
(2)请补全条形统计图,并求扇形统计图中“视力正常”的圆心角度数;
(3)该校八年级共有200位学生,请估计该校八年级视力正常的学生人数.
21.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元) 180 260 280 300
y(间) 100 60 50 40
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)
22.如图,甲、乙两数学兴趣小组测量山CD 的高度.甲小组在地面A处测量,乙小组在上坡B处测量,AB=200m.甲小组测得山顶D的仰角为45°,山坡B处的仰角为30°;乙小组测得山顶D 的仰角为58°.求山CD的高度(结果保留一位小数).参考数据: , ,供选用.
23.如图,已知C是弧AB的中点,OC交弦AB于点D.∠AOB=120°,AD=8.求OA的长.
24.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由.
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
三 、计算题:
17.计算:sin60°+|﹣5|﹣ (4015﹣π)0+(﹣1)2017+( )﹣1.
18.解不等式组:
四 、解答题:
19.已知反比例函数 ,当x=2时,y=3.
①求m的值;②当3≤x≤6时,求函数值y的取值范围.
20.为了解永康市某中学八年级学生的视力水平,从中抽查部分学生的视力情况,绘制了如图统计图:
(1)本次调查的样本容量是 ;
(2)请补全条形统计图,并求扇形统计图中“视力正常”的圆心角度数;
(3)该校八年级共有200位学生,请估计该校八年级视力正常的学生人数.
21.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元) 180 260 280 300
y(间) 100 60 50 40
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)
22.如图,甲、乙两数学兴趣小组测量山CD 的高度.甲小组在地面A处测量,乙小组在上坡B处测量,AB=200m.甲小组测得山顶D的仰角为45°,山坡B处的仰角为30°;乙小组测得山顶D 的仰角为58°.求山CD的高度(结果保留一位小数).参考数据: , ,供选用.
23.如图,已知C是弧AB的中点,OC交弦AB于点D.∠AOB=120°,AD=8.求OA的长.
24.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由.