高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。

  一、单科选考分析

  以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。

 高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  ↑表格来源:自主选拔在线,非官方数据仅供参考

  1、两个首选科目差距不大,偏文科人数较往年有所上涨

  首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。

  2、生物成热门,政治受冷落

  为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。

  一、单科选考分析

  以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。

 高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  ↑表格来源:自主选拔在线,非官方数据仅供参考

  1、两个首选科目差距不大,偏文科人数较往年有所上涨

  首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。

  2、生物成热门,政治受冷落

  为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。

数学“导数的由来”

2016-08-25 来源: 作者: CSXDFMI

扫码关注“长沙升学那些事”公众号

带你了解更多升学信息

  导数是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)。

  导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

  不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

  对于可导的函数f(x),f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

  起源

  大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。

  发展

  17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。

  成熟

  1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示:{dy/dx)=lim(oy/ox).

  1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达。导数的定义也就获得了今天常见的形式。

  微积分学理论基础,大体可以分为两个部分。一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限理论,指一种意识形态上的过程,比如无限接近。

  就数学历史来看,两种理论都有一定的道理。其中实无限用了150年,后来极限论就是现在所使用的。

  光是电磁波还是粒子是一个物理学长期争论的问题,后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论,都不是最好的方法。

  连续不可导的曲线

  例如,魏尔斯特拉斯函数就是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。魏尔斯特拉斯函数得名于十九世纪的德国数学家卡尔·魏尔斯特拉斯(KarlTheodorWilhelmWeierstrass;1815–1897)。历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯之前,数学家们对函数的连续性认识并不深刻。许多数学家认为除了少数一些特殊的点以外,连续的函数曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当时数学家对连续函数的看法。

  认识了导数的由来之后,那么利用导数理论解决数学问题还是我们学习的重中之重。

更多中学学习内容请关注:优能中学

了解长沙新东方中学课程信息 请点击:中学选课专题   中学课程

  • 相关推荐
  • 免费申请学习规划

    附近校区展示
    浏城桥教学区
    湖南省长沙市芙蓉中路二段99号东成大厦
    0731-84885588
    东塘北教学区
    长沙市韶山北路438号杂技团4楼
    0731-84887360
    沁园春教学区
    湖南省长沙市岳麓区银盆南路金荣科技园M1组团B座五楼
    0731-84887325
    湘江世纪城教学区
    湖南省长沙市开福区福城路98号顺天黄金海岸酒店3楼
    0731-84887333
    雨花家园教学区
    长沙市万家丽仁和雨花家园38栋101房2楼
    0731-84887313
    长沙新东方官微 升学那些事

    更多一手课程报名优惠
    请扫描关注
    新东方长沙学校官方微信

    升初名校真题
    中考历年真题
    一键扫描获取!!!

    经营许可证编号: 京ICP备05067667号-32 | 京ICP证060601号| 京网文(2016)5762-750号 | 京公网安备11010802021790号

    Copyright © 2011-2020 Neworiental Corporation, All Rights Reserved

    新媒体平台资质审核电话:010-60908000-8941

    咨询 微博 课程 校区 建议
    新东方网>长沙新东方学校>优能中学>正文
    数学“导数的由来”
    2016-08-25 来源: 作者: CSXDFMI

    找资料、找老师、找方法?

    即刻定制你的学习方法!

    我要定制

    扫码关注“长沙升学那些事”公众号

    带你了解更多升学信息

      导数是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)。

      导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

      不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

      对于可导的函数f(x),f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

      起源

      大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。

      发展

      17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。

      成熟

      1750年达朗贝尔在为法国科学家院出版的《百科全书》第四版写的“微分”条目中提出了关于导数的一种观点,可以用现代符号简单表示:{dy/dx)=lim(oy/ox).

      1823年,柯西在他的《无穷小分析概论》中定义导数:如果函数y=f(x)在变量x的两个给定的界限之间保持连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么是使变量得到一个无穷小增量。19世纪60年代以后,魏尔斯特拉斯创造了ε-δ语言,对微积分中出现的各种类型的极限重加表达。导数的定义也就获得了今天常见的形式。

      微积分学理论基础,大体可以分为两个部分。一个是实无限理论,即无限是一个具体的东西,一种真实的存在;另一种是潜无限理论,指一种意识形态上的过程,比如无限接近。

      就数学历史来看,两种理论都有一定的道理。其中实无限用了150年,后来极限论就是现在所使用的。

      光是电磁波还是粒子是一个物理学长期争论的问题,后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论,都不是最好的方法。

      连续不可导的曲线

      例如,魏尔斯特拉斯函数就是一类处处连续而处处不可导的实值函数。魏尔斯特拉斯函数是一种无法用笔画出任何一部分的函数,因为每一点的导数都不存在,画的人无法知道每一点该朝哪个方向画。魏尔斯特拉斯函数的每一点的斜率也是不存在的。魏尔斯特拉斯函数得名于十九世纪的德国数学家卡尔·魏尔斯特拉斯(KarlTheodorWilhelmWeierstrass;1815–1897)。历史上,魏尔斯特拉斯函数是一个著名的数学反例。魏尔斯特拉斯之前,数学家们对函数的连续性认识并不深刻。许多数学家认为除了少数一些特殊的点以外,连续的函数曲线在每一点上总会有斜率。魏尔斯特拉斯函数的出现说明了所谓的“病态”函数的存在性,改变了当时数学家对连续函数的看法。

      认识了导数的由来之后,那么利用导数理论解决数学问题还是我们学习的重中之重。

    更多中学学习内容请关注:优能中学

    了解长沙新东方中学课程信息 请点击:中学选课专题   中学课程

    展开本页剩余
    免费定制专属学习方案
    姓名
    电话
    年级
    我要定制

    高中工具箱

    学习资讯
    语文 数学 英语 物理 化学
    班级名称 课程介绍 课程咨询
    高一语文 理解高一语文知识重难点,制定高中学习计划
    高二语文 夯实高一基础,理解实记高二知识点
    高考语文 高度总结高考语文重难点,梳理知识脉络
    班级名称 课程介绍 课程咨询
    高一数学 讲解高一知识重难点,培养良好学习习惯
    高二数学 高二典型试题知识详解,传授高二学习方法
    高考数学 提炼难题知识点,脉络知识梳理冲刺高考
    班级名称 课程介绍 课程咨询
    高一英语 高一英语知识详解,传授高中英语学习方法
    高二英语 提炼归纳英语重难点,规划高二学习计划
    高考英语 深入渗透高中英语知识,梳理知识体系
    班级名称 课程介绍 课程咨询
    高一物理 重难点详解,培养高中物理学习素养
    高二物理 突破高二知识难点,独到中学生服务体系
    高考物理 主讲高考知识点及难题,梳理知识体系
    班级名称 课程介绍 课程咨询
    高一化学 高一化学重难点详解,规划高中学习计划
    高二化学 典型例题及知识点解读,梳理学习脉络
    高考化学 巩固复习高中化学知识点,冲刺高考
    附近校区展示
    浏城桥教学区
    湖南省长沙市芙蓉中路二段99号东成大厦
    0731-84885588
    东塘北教学区
    长沙市韶山北路438号杂技团4楼
    0731-84887360
    沁园春教学区
    湖南省长沙市岳麓区银盆南路金荣科技园M1组团B座五楼
    0731-84887325
    湘江世纪城教学区
    湖南省长沙市开福区福城路98号顺天黄金海岸酒店3楼
    0731-84887333
    雨花家园教学区
    长沙市万家丽仁和雨花家园38栋101房2楼
    0731-84887313
    长沙新东方官微
    更多一手课程报名优惠
    请关注扫描
    新东方长沙学校官方微信
    Copyright 2011-2021 Neworiental Corporation
    All Rights Reserved