高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。

  一、单科选考分析

  以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。

 高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  ↑表格来源:自主选拔在线,非官方数据仅供参考

  1、两个首选科目差距不大,偏文科人数较往年有所上涨

  首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。

  2、生物成热门,政治受冷落

  为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。

  一、单科选考分析

  以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。

 高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  ↑表格来源:自主选拔在线,非官方数据仅供参考

  1、两个首选科目差距不大,偏文科人数较往年有所上涨

  首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。

  2、生物成热门,政治受冷落

  为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:

高中选文还是选理?湖南2021届新高考选科数据出炉!(附选科建议)

  从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。

2018年高二数学知识点:排列组合

2018-07-11 来源: 网络整理 作者: 长晓野

扫码关注“长沙升学那些事”公众号

带你了解更多升学信息

  导读:高二一年,强人将浮出水面,鸟人将沉入海底。高二重点解决三个问题:一,吃透课本;二,找寻适合自己的学习方法;三,总结自己考试技巧,形成习惯。为了帮助同学的学习更上一层楼,长沙新东方的小编分大家选取了一篇高二数学知识点,供大家学习、参考。

  排列P------和顺序有关

  组合C-------不牵涉到顺序的问题

  排列分顺序,组合不分

  例如把5本不同的书分给3个人,有几种分法."排列"

  把5本书分给3个人,有几种分法"组合"

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

  3.其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

  n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

  n!/(n1!*n2!*...*nk!).

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

  排列(Pnm(n为下标,m为上标))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1

  从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);

  因为从n到(n-r+1)个数为n-(n-r+1)=r

  举例:

  Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

  A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

  上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)

  Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?   A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

  上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1   排列、组合的概念和公式典型例题分析

  例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?

  解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

  (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.   点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

  例2排成一行,其中不排,不排第二,不排第三,不排第四的不同排法共有多少种?

  解依题意,符合要求的排法可分为个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

  ∴符合题意的不同排法共有9种.

  点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

  例3判断下列问题是排列问题还是组合问题?并计算出结果.

  (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?   (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

  (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

  (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

  分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

  (1)①是排列问题,共用了封信;②是组合问题,共需握手(次).

  (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.

  (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.

  (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.

  延伸阅读:

  2018高中产品资讯专题

  五大学科竞赛信息集锦专题

  2018年高二数学知识点:变量之间的关系

  2018年高二数学知识点:圆与方程

  2018年高二数学知识点:直线与方程

  2018年高二数学知识点:圆锥曲线

  2018年高二数学知识点:复数


  • 相关推荐
  • 免费申请学习规划

    附近校区展示
    浏城桥教学区
    湖南省长沙市芙蓉中路二段99号东成大厦
    0731-84885588
    东塘北教学区
    长沙市韶山北路438号杂技团4楼
    0731-84887360
    沁园春教学区
    湖南省长沙市岳麓区银盆南路金荣科技园M1组团B座五楼
    0731-84887325
    湘江世纪城教学区
    湖南省长沙市开福区福城路98号顺天黄金海岸酒店3楼
    0731-84887333
    雨花家园教学区
    长沙市万家丽仁和雨花家园38栋101房2楼
    0731-84887313
    长沙新东方官微 升学那些事

    更多一手课程报名优惠
    请扫描关注
    新东方长沙学校官方微信

    升初名校真题
    中考历年真题
    一键扫描获取!!!

    经营许可证编号: 京ICP备05067667号-32 | 京ICP证060601号| 京网文(2016)5762-750号 | 京公网安备11010802021790号

    Copyright © 2011-2020 Neworiental Corporation, All Rights Reserved

    新媒体平台资质审核电话:010-60908000-8941

    咨询 微博 课程 校区 建议
    新东方网>长沙新东方学校>高考>高二>知识点>数学>正文
    2018年高二数学知识点:排列组合
    2018-07-11 来源: 网络整理 作者: 长晓野

    找资料、找老师、找方法?

    即刻定制你的学习方法!

    我要定制

    扫码关注“长沙升学那些事”公众号

    带你了解更多升学信息

      导读:高二一年,强人将浮出水面,鸟人将沉入海底。高二重点解决三个问题:一,吃透课本;二,找寻适合自己的学习方法;三,总结自己考试技巧,形成习惯。为了帮助同学的学习更上一层楼,长沙新东方的小编分大家选取了一篇高二数学知识点,供大家学习、参考。

      排列P------和顺序有关

      组合C-------不牵涉到顺序的问题

      排列分顺序,组合不分

      例如把5本不同的书分给3个人,有几种分法."排列"

      把5本书分给3个人,有几种分法"组合"

      1.排列及计算公式

      从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

      p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

      2.组合及计算公式

      从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.

      c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

      3.其他排列与组合公式

      从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

      n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

      n!/(n1!*n2!*...*nk!).

      k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

      排列(Pnm(n为下标,m为上标))

      Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

      组合(Cnm(n为下标,m为上标))

      Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

      公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1

      从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);

      因为从n到(n-r+1)个数为n-(n-r+1)=r

      举例:

      Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

      A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

      上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)

      Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?   A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

      上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1   排列、组合的概念和公式典型例题分析

      例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?

      解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

      (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.   点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

      例2排成一行,其中不排,不排第二,不排第三,不排第四的不同排法共有多少种?

      解依题意,符合要求的排法可分为个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

      ∴符合题意的不同排法共有9种.

      点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

      例3判断下列问题是排列问题还是组合问题?并计算出结果.

      (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?   (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

      (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

      (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

      分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

      (1)①是排列问题,共用了封信;②是组合问题,共需握手(次).

      (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.

      (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.

      (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.

      延伸阅读:

      2018高中产品资讯专题

      五大学科竞赛信息集锦专题

      2018年高二数学知识点:变量之间的关系

      2018年高二数学知识点:圆与方程

      2018年高二数学知识点:直线与方程

      2018年高二数学知识点:圆锥曲线

      2018年高二数学知识点:复数


    展开本页剩余
    免费定制专属学习方案
    姓名
    电话
    年级
    我要定制

    高中工具箱

    学习资讯
    语文 数学 英语 物理 化学
    班级名称 课程介绍 课程咨询
    高一语文 理解高一语文知识重难点,制定高中学习计划
    高二语文 夯实高一基础,理解实记高二知识点
    高考语文 高度总结高考语文重难点,梳理知识脉络
    班级名称 课程介绍 课程咨询
    高一数学 讲解高一知识重难点,培养良好学习习惯
    高二数学 高二典型试题知识详解,传授高二学习方法
    高考数学 提炼难题知识点,脉络知识梳理冲刺高考
    班级名称 课程介绍 课程咨询
    高一英语 高一英语知识详解,传授高中英语学习方法
    高二英语 提炼归纳英语重难点,规划高二学习计划
    高考英语 深入渗透高中英语知识,梳理知识体系
    班级名称 课程介绍 课程咨询
    高一物理 重难点详解,培养高中物理学习素养
    高二物理 突破高二知识难点,独到中学生服务体系
    高考物理 主讲高考知识点及难题,梳理知识体系
    班级名称 课程介绍 课程咨询
    高一化学 高一化学重难点详解,规划高中学习计划
    高二化学 典型例题及知识点解读,梳理学习脉络
    高考化学 巩固复习高中化学知识点,冲刺高考
    附近校区展示
    浏城桥教学区
    湖南省长沙市芙蓉中路二段99号东成大厦
    0731-84885588
    东塘北教学区
    长沙市韶山北路438号杂技团4楼
    0731-84887360
    沁园春教学区
    湖南省长沙市岳麓区银盆南路金荣科技园M1组团B座五楼
    0731-84887325
    湘江世纪城教学区
    湖南省长沙市开福区福城路98号顺天黄金海岸酒店3楼
    0731-84887333
    雨花家园教学区
    长沙市万家丽仁和雨花家园38栋101房2楼
    0731-84887313
    长沙新东方官微
    更多一手课程报名优惠
    请关注扫描
    新东方长沙学校官方微信
    Copyright 2011-2021 Neworiental Corporation
    All Rights Reserved