导读:与小学数学相比,初中数学的知识在深度和广度上都有较大的拓展。初二的数学在难度上有一个提升。我们在分析研究中也发现,初二数学知识点在中考的比例占了百分之五十以上,可见学好初二数学的重要性有多大。以下是为大家总结的初二数学的重难点,以便大家参考。
(一)一次函数与反比例函数
初二我们接触的函数知识将贯穿初高中学习整个过程,是代数学习的重点内容,也是解决综合问题的“强力工具”,它的学习效果,直接影响到中考中中难档次题的解答.
1、采用类比的方法,积累学习函数的常规顺序,这将会使得你在函数繁杂的内容中找到方便记忆和调用知识的捷径.如一般函数的学习都会是按照以下顺序:剖析定义,表示方法,对应认识函数的图象与性质,从函数的观点再认识以前学习过的对应的方程和不等式(组),实际应用.
2、常见的考察热点难点集中在其中数形结合的这部分内容上,大家可以有意识的在老师的指导下进行题目的归纳压缩、方法优化.
其实整式、分式、二次根式的学习也是有其类似之处的,如果我们从类比的角度去学习,将得到事半功倍的效果.
(二)全等三角形
这部分内容相对比较灵活,定理逐渐增多,几何证明要求逐渐增加,很容易出现“虚假掌握”的情况(看解答都会,自己写总觉得“差不多”,实际上总达不到解题要求).是特别体现几何学习中基础知识重要性和反思小结、解题策略重要性的地方.
1、重视基本格式.很多同学一开始不习惯几何推理的写法,其实有个很好的办法,定期重复书写一些重点题目,特别需要一字不差的落实.
2、收集常见的基本图.在处理几何问题时,如果能够很快找到“眼熟”的图形,就很快可以找到解题的突破点.
3、定期反思小结.几何问题中,题目会显得比代数问题杂乱,不能仅靠做大量的题来“应对”下一道“新题”,特别是以后到了四边形,内容更加复杂,做不过来所有的题,更别提初三复习中那么多的综合几何题了.因此,我们需要在早期养成定期反思小结的习惯
延伸阅读
2018长沙初二数学重难点总结
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:与小学数学相比,初中数学的知识在深度和广度上都有较大的拓展。初二的数学在难度上有一个提升。我们在分析研究中也发现,初二数学知识点在中考的比例占了百分之五十以上,可见学好初二数学的重要性有多大。以下是为大家总结的初二数学的重难点,以便大家参考。
(一)一次函数与反比例函数
初二我们接触的函数知识将贯穿初高中学习整个过程,是代数学习的重点内容,也是解决综合问题的“强力工具”,它的学习效果,直接影响到中考中中难档次题的解答.
1、采用类比的方法,积累学习函数的常规顺序,这将会使得你在函数繁杂的内容中找到方便记忆和调用知识的捷径.如一般函数的学习都会是按照以下顺序:剖析定义,表示方法,对应认识函数的图象与性质,从函数的观点再认识以前学习过的对应的方程和不等式(组),实际应用.
2、常见的考察热点难点集中在其中数形结合的这部分内容上,大家可以有意识的在老师的指导下进行题目的归纳压缩、方法优化.
其实整式、分式、二次根式的学习也是有其类似之处的,如果我们从类比的角度去学习,将得到事半功倍的效果.
(二)全等三角形
这部分内容相对比较灵活,定理逐渐增多,几何证明要求逐渐增加,很容易出现“虚假掌握”的情况(看解答都会,自己写总觉得“差不多”,实际上总达不到解题要求).是特别体现几何学习中基础知识重要性和反思小结、解题策略重要性的地方.
1、重视基本格式.很多同学一开始不习惯几何推理的写法,其实有个很好的办法,定期重复书写一些重点题目,特别需要一字不差的落实.
2、收集常见的基本图.在处理几何问题时,如果能够很快找到“眼熟”的图形,就很快可以找到解题的突破点.
3、定期反思小结.几何问题中,题目会显得比代数问题杂乱,不能仅靠做大量的题来“应对”下一道“新题”,特别是以后到了四边形,内容更加复杂,做不过来所有的题,更别提初三复习中那么多的综合几何题了.因此,我们需要在早期养成定期反思小结的习惯
延伸阅读
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:与小学数学相比,初中数学的知识在深度和广度上都有较大的拓展。初二的数学在难度上有一个提升。我们在分析研究中也发现,初二数学知识点在中考的比例占了百分之五十以上,可见学好初二数学的重要性有多大。以下是为大家总结的初二数学的重难点,以便大家参考。
(一)一次函数与反比例函数
初二我们接触的函数知识将贯穿初高中学习整个过程,是代数学习的重点内容,也是解决综合问题的“强力工具”,它的学习效果,直接影响到中考中中难档次题的解答.
1、采用类比的方法,积累学习函数的常规顺序,这将会使得你在函数繁杂的内容中找到方便记忆和调用知识的捷径.如一般函数的学习都会是按照以下顺序:剖析定义,表示方法,对应认识函数的图象与性质,从函数的观点再认识以前学习过的对应的方程和不等式(组),实际应用.
2、常见的考察热点难点集中在其中数形结合的这部分内容上,大家可以有意识的在老师的指导下进行题目的归纳压缩、方法优化.
其实整式、分式、二次根式的学习也是有其类似之处的,如果我们从类比的角度去学习,将得到事半功倍的效果.
(二)全等三角形
这部分内容相对比较灵活,定理逐渐增多,几何证明要求逐渐增加,很容易出现“虚假掌握”的情况(看解答都会,自己写总觉得“差不多”,实际上总达不到解题要求).是特别体现几何学习中基础知识重要性和反思小结、解题策略重要性的地方.
1、重视基本格式.很多同学一开始不习惯几何推理的写法,其实有个很好的办法,定期重复书写一些重点题目,特别需要一字不差的落实.
2、收集常见的基本图.在处理几何问题时,如果能够很快找到“眼熟”的图形,就很快可以找到解题的突破点.
3、定期反思小结.几何问题中,题目会显得比代数问题杂乱,不能仅靠做大量的题来“应对”下一道“新题”,特别是以后到了四边形,内容更加复杂,做不过来所有的题,更别提初三复习中那么多的综合几何题了.因此,我们需要在早期养成定期反思小结的习惯
延伸阅读