导读:今天我们为大家整理了2018年长沙初三上册数学知识点:图形的旋转,仅供参考。要想学好初中数学需要课前认真预习,预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。
1. 图形的旋转
(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。
2. 旋转的基本特征:
(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;
(3)图形在旋转时,图形的大小和形状都没有发生改变。
3. 几点说明:
(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。
(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。
(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。
延伸阅读:
2018年长沙初三上册数学知识点:图形的旋转
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:今天我们为大家整理了2018年长沙初三上册数学知识点:图形的旋转,仅供参考。要想学好初中数学需要课前认真预习,预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。
1. 图形的旋转
(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。
2. 旋转的基本特征:
(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;
(3)图形在旋转时,图形的大小和形状都没有发生改变。
3. 几点说明:
(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。
(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。
(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。
延伸阅读:
【专项资料,点击领取】
二元一次方程强化练习扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:今天我们为大家整理了2018年长沙初三上册数学知识点:图形的旋转,仅供参考。要想学好初中数学需要课前认真预习,预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。
1. 图形的旋转
(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。
2. 旋转的基本特征:
(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;
(3)图形在旋转时,图形的大小和形状都没有发生改变。
3. 几点说明:
(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。
(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。
(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。
延伸阅读: