导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。
一、单科选考分析
以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。
↑表格来源:自主选拔在线,非官方数据仅供参考
1、两个首选科目差距不大,偏文科人数较往年有所上涨
首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。
说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。
2、生物成热门,政治受冷落
为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:
从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。
导读:2021湖南高考报名考生共57.49万人,除保送生、高职院校单独招生、师范生等考生外,实际考生近40.02万人,其中普通高考考生37.22万人(历史类考生16.58万人,占44.55%;物理类考生20.64万,占55.45%)。
一、单科选考分析
以下为新高考改革第三批实行3+1+2方案的省市2021届学生(刚刚结束高考的本届高三学生)的各科选考数据,从整体来看各省选科占比相对比较均衡,最受欢迎的科目是生物。
↑表格来源:自主选拔在线,非官方数据仅供参考
1、两个首选科目差距不大,偏文科人数较往年有所上涨
首先从首选的物理、历史两个科目来看,总体来说选考两科的比例很接近。而首选历史或物理一定程度上可以反映考生的偏文理程度,我们通过对比2019年其中六个省份的文科生占比情况(见下表)发现,大部分省份的偏文科比例都有所上涨。
说明:表中2019文科占比数据是基于2019年各省发布的一分一段表文理人数计算而来,艺术类考生暂未计入。
2、生物成热门,政治受冷落
为方便大家直观的看出各科目选考比例,我们将这届七省选考数据转换成柱状图:
从上述图表中可以看出,生物的选考比例高居首位,紧接着就是物理和地理两门科目选考人数最多,其次就是历史、化学。而政治科目选考人数最少,这可能与政治这门学科背诵内容多、不容易拿高分的特性有关。
2018高一数学必修一知识点:集合
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:高中数学和初中数学不同的是除了逻辑上的思考和应用,还对计算能力有更高一步的要求,在难度上有所提高。尤其是函数,更是必须掌握好的重点知识之一。对此长沙新东方整理了关于高中数学中函数的知识点,希望能够对同学们的学习有所帮助。
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N*或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。AÍA
②真子集:如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AÍB,BÍC,那么AÍC
④如果AÍB同时BÍA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型:交集、并集、补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}。
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB})。
延伸阅读:
更多一手课程报名优惠
请扫描关注
新东方长沙学校官方微信
升初名校真题
中考历年真题
一键扫描获取!!!
扫码关注“长沙升学那些事”公众号
带你了解更多升学信息
导读:高中数学和初中数学不同的是除了逻辑上的思考和应用,还对计算能力有更高一步的要求,在难度上有所提高。尤其是函数,更是必须掌握好的重点知识之一。对此长沙新东方整理了关于高中数学中函数的知识点,希望能够对同学们的学习有所帮助。
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N*或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。AÍA
②真子集:如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AÍB,BÍC,那么AÍC
④如果AÍB同时BÍA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型:交集、并集、补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}。
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB})。
延伸阅读:
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一语文 | 理解高一语文知识重难点,制定高中学习计划 | |
高二语文 | 夯实高一基础,理解实记高二知识点 | |
高考语文 | 高度总结高考语文重难点,梳理知识脉络 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一数学 | 讲解高一知识重难点,培养良好学习习惯 | |
高二数学 | 高二典型试题知识详解,传授高二学习方法 | |
高考数学 | 提炼难题知识点,脉络知识梳理冲刺高考 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一英语 | 高一英语知识详解,传授高中英语学习方法 | |
高二英语 | 提炼归纳英语重难点,规划高二学习计划 | |
高考英语 | 深入渗透高中英语知识,梳理知识体系 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一物理 | 重难点详解,培养高中物理学习素养 | |
高二物理 | 突破高二知识难点,独到中学生服务体系 | |
高考物理 | 主讲高考知识点及难题,梳理知识体系 |
班级名称 | 课程介绍 | 课程咨询 |
---|---|---|
高一化学 | 高一化学重难点详解,规划高中学习计划 | |
高二化学 | 典型例题及知识点解读,梳理学习脉络 | |
高考化学 | 巩固复习高中化学知识点,冲刺高考 |